#cython: language_level=3 #distutils: define_macros=CYTHON_TRACE_NOGIL=1 # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import cython except ImportError: # if cython not installed, use mock module with no-op decorators and types from fontTools.misc import cython import math from .errors import Error as Cu2QuError, ApproxNotFoundError __all__ = ['curve_to_quadratic', 'curves_to_quadratic'] MAX_N = 100 NAN = float("NaN") if cython.compiled: # Yep, I'm compiled. COMPILED = True else: # Just a lowly interpreted script. COMPILED = False @cython.cfunc @cython.inline @cython.returns(cython.double) @cython.locals(v1=cython.complex, v2=cython.complex) def dot(v1, v2): """Return the dot product of two vectors. Args: v1 (complex): First vector. v2 (complex): Second vector. Returns: double: Dot product. """ return (v1 * v2.conjugate()).real @cython.cfunc @cython.inline @cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex) @cython.locals(_1=cython.complex, _2=cython.complex, _3=cython.complex, _4=cython.complex) def calc_cubic_points(a, b, c, d): _1 = d _2 = (c / 3.0) + d _3 = (b + c) / 3.0 + _2 _4 = a + d + c + b return _1, _2, _3, _4 @cython.cfunc @cython.inline @cython.locals(p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex) @cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex) def calc_cubic_parameters(p0, p1, p2, p3): c = (p1 - p0) * 3.0 b = (p2 - p1) * 3.0 - c d = p0 a = p3 - d - c - b return a, b, c, d @cython.cfunc @cython.locals(p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex) def split_cubic_into_n_iter(p0, p1, p2, p3, n): """Split a cubic Bezier into n equal parts. Splits the curve into `n` equal parts by curve time. (t=0..1/n, t=1/n..2/n, ...) Args: p0 (complex): Start point of curve. p1 (complex): First handle of curve. p2 (complex): Second handle of curve. p3 (complex): End point of curve. Returns: An iterator yielding the control points (four complex values) of the subcurves. """ # Hand-coded special-cases if n == 2: return iter(split_cubic_into_two(p0, p1, p2, p3)) if n == 3: return iter(split_cubic_into_three(p0, p1, p2, p3)) if n == 4: a, b = split_cubic_into_two(p0, p1, p2, p3) return iter(split_cubic_into_two(*a) + split_cubic_into_two(*b)) if n == 6: a, b = split_cubic_into_two(p0, p1, p2, p3) return iter(split_cubic_into_three(*a) + split_cubic_into_three(*b)) return _split_cubic_into_n_gen(p0,p1,p2,p3,n) @cython.locals(p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex, n=cython.int) @cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex) @cython.locals(dt=cython.double, delta_2=cython.double, delta_3=cython.double, i=cython.int) @cython.locals(a1=cython.complex, b1=cython.complex, c1=cython.complex, d1=cython.complex) def _split_cubic_into_n_gen(p0, p1, p2, p3, n): a, b, c, d = calc_cubic_parameters(p0, p1, p2, p3) dt = 1 / n delta_2 = dt * dt delta_3 = dt * delta_2 for i in range(n): t1 = i * dt t1_2 = t1 * t1 # calc new a, b, c and d a1 = a * delta_3 b1 = (3*a*t1 + b) * delta_2 c1 = (2*b*t1 + c + 3*a*t1_2) * dt d1 = a*t1*t1_2 + b*t1_2 + c*t1 + d yield calc_cubic_points(a1, b1, c1, d1) @cython.locals(p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex) @cython.locals(mid=cython.complex, deriv3=cython.complex) def split_cubic_into_two(p0, p1, p2, p3): """Split a cubic Bezier into two equal parts. Splits the curve into two equal parts at t = 0.5 Args: p0 (complex): Start point of curve. p1 (complex): First handle of curve. p2 (complex): Second handle of curve. p3 (complex): End point of curve. Returns: tuple: Two cubic Beziers (each expressed as a tuple of four complex values). """ mid = (p0 + 3 * (p1 + p2) + p3) * .125 deriv3 = (p3 + p2 - p1 - p0) * .125 return ((p0, (p0 + p1) * .5, mid - deriv3, mid), (mid, mid + deriv3, (p2 + p3) * .5, p3)) @cython.locals(p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex, _27=cython.double) @cython.locals(mid1=cython.complex, deriv1=cython.complex, mid2=cython.complex, deriv2=cython.complex) def split_cubic_into_three(p0, p1, p2, p3, _27=1/27): """Split a cubic Bezier into three equal parts. Splits the curve into three equal parts at t = 1/3 and t = 2/3 Args: p0 (complex): Start point of curve. p1 (complex): First handle of curve. p2 (complex): Second handle of curve. p3 (complex): End point of curve. Returns: tuple: Three cubic Beziers (each expressed as a tuple of four complex values). """ # we define 1/27 as a keyword argument so that it will be evaluated only # once but still in the scope of this function mid1 = (8*p0 + 12*p1 + 6*p2 + p3) * _27 deriv1 = (p3 + 3*p2 - 4*p0) * _27 mid2 = (p0 + 6*p1 + 12*p2 + 8*p3) * _27 deriv2 = (4*p3 - 3*p1 - p0) * _27 return ((p0, (2*p0 + p1) / 3.0, mid1 - deriv1, mid1), (mid1, mid1 + deriv1, mid2 - deriv2, mid2), (mid2, mid2 + deriv2, (p2 + 2*p3) / 3.0, p3)) @cython.returns(cython.complex) @cython.locals(t=cython.double, p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex) @cython.locals(_p1=cython.complex, _p2=cython.complex) def cubic_approx_control(t, p0, p1, p2, p3): """Approximate a cubic Bezier using a quadratic one. Args: t (double): Position of control point. p0 (complex): Start point of curve. p1 (complex): First handle of curve. p2 (complex): Second handle of curve. p3 (complex): End point of curve. Returns: complex: Location of candidate control point on quadratic curve. """ _p1 = p0 + (p1 - p0) * 1.5 _p2 = p3 + (p2 - p3) * 1.5 return _p1 + (_p2 - _p1) * t @cython.returns(cython.complex) @cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex) @cython.locals(ab=cython.complex, cd=cython.complex, p=cython.complex, h=cython.double) def calc_intersect(a, b, c, d): """Calculate the intersection of two lines. Args: a (complex): Start point of first line. b (complex): End point of first line. c (complex): Start point of second line. d (complex): End point of second line. Returns: complex: Location of intersection if one present, ``complex(NaN,NaN)`` if no intersection was found. """ ab = b - a cd = d - c p = ab * 1j try: h = dot(p, a - c) / dot(p, cd) except ZeroDivisionError: return complex(NAN, NAN) return c + cd * h @cython.cfunc @cython.returns(cython.int) @cython.locals(tolerance=cython.double, p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex) @cython.locals(mid=cython.complex, deriv3=cython.complex) def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance): """Check if a cubic Bezier lies within a given distance of the origin. "Origin" means *the* origin (0,0), not the start of the curve. Note that no checks are made on the start and end positions of the curve; this function only checks the inside of the curve. Args: p0 (complex): Start point of curve. p1 (complex): First handle of curve. p2 (complex): Second handle of curve. p3 (complex): End point of curve. tolerance (double): Distance from origin. Returns: bool: True if the cubic Bezier ``p`` entirely lies within a distance ``tolerance`` of the origin, False otherwise. """ # First check p2 then p1, as p2 has higher error early on. if abs(p2) <= tolerance and abs(p1) <= tolerance: return True # Split. mid = (p0 + 3 * (p1 + p2) + p3) * .125 if abs(mid) > tolerance: return False deriv3 = (p3 + p2 - p1 - p0) * .125 return (cubic_farthest_fit_inside(p0, (p0+p1)*.5, mid-deriv3, mid, tolerance) and cubic_farthest_fit_inside(mid, mid+deriv3, (p2+p3)*.5, p3, tolerance)) @cython.cfunc @cython.locals(tolerance=cython.double, _2_3=cython.double) @cython.locals(q1=cython.complex, c0=cython.complex, c1=cython.complex, c2=cython.complex, c3=cython.complex) def cubic_approx_quadratic(cubic, tolerance, _2_3=2/3): """Approximate a cubic Bezier with a single quadratic within a given tolerance. Args: cubic (sequence): Four complex numbers representing control points of the cubic Bezier curve. tolerance (double): Permitted deviation from the original curve. Returns: Three complex numbers representing control points of the quadratic curve if it fits within the given tolerance, or ``None`` if no suitable curve could be calculated. """ # we define 2/3 as a keyword argument so that it will be evaluated only # once but still in the scope of this function q1 = calc_intersect(*cubic) if math.isnan(q1.imag): return None c0 = cubic[0] c3 = cubic[3] c1 = c0 + (q1 - c0) * _2_3 c2 = c3 + (q1 - c3) * _2_3 if not cubic_farthest_fit_inside(0, c1 - cubic[1], c2 - cubic[2], 0, tolerance): return None return c0, q1, c3 @cython.cfunc @cython.locals(n=cython.int, tolerance=cython.double, _2_3=cython.double) @cython.locals(i=cython.int) @cython.locals(c0=cython.complex, c1=cython.complex, c2=cython.complex, c3=cython.complex) @cython.locals(q0=cython.complex, q1=cython.complex, next_q1=cython.complex, q2=cython.complex, d1=cython.complex) def cubic_approx_spline(cubic, n, tolerance, _2_3=2/3): """Approximate a cubic Bezier curve with a spline of n quadratics. Args: cubic (sequence): Four complex numbers representing control points of the cubic Bezier curve. n (int): Number of quadratic Bezier curves in the spline. tolerance (double): Permitted deviation from the original curve. Returns: A list of ``n+2`` complex numbers, representing control points of the quadratic spline if it fits within the given tolerance, or ``None`` if no suitable spline could be calculated. """ # we define 2/3 as a keyword argument so that it will be evaluated only # once but still in the scope of this function if n == 1: return cubic_approx_quadratic(cubic, tolerance) cubics = split_cubic_into_n_iter(cubic[0], cubic[1], cubic[2], cubic[3], n) # calculate the spline of quadratics and check errors at the same time. next_cubic = next(cubics) next_q1 = cubic_approx_control(0, *next_cubic) q2 = cubic[0] d1 = 0j spline = [cubic[0], next_q1] for i in range(1, n+1): # Current cubic to convert c0, c1, c2, c3 = next_cubic # Current quadratic approximation of current cubic q0 = q2 q1 = next_q1 if i < n: next_cubic = next(cubics) next_q1 = cubic_approx_control(i / (n-1), *next_cubic) spline.append(next_q1) q2 = (q1 + next_q1) * .5 else: q2 = c3 # End-point deltas d0 = d1 d1 = q2 - c3 if (abs(d1) > tolerance or not cubic_farthest_fit_inside(d0, q0 + (q1 - q0) * _2_3 - c1, q2 + (q1 - q2) * _2_3 - c2, d1, tolerance)): return None spline.append(cubic[3]) return spline @cython.locals(max_err=cython.double) @cython.locals(n=cython.int) def curve_to_quadratic(curve, max_err): """Approximate a cubic Bezier curve with a spline of n quadratics. Args: cubic (sequence): Four 2D tuples representing control points of the cubic Bezier curve. max_err (double): Permitted deviation from the original curve. Returns: A list of 2D tuples, representing control points of the quadratic spline if it fits within the given tolerance, or ``None`` if no suitable spline could be calculated. """ curve = [complex(*p) for p in curve] for n in range(1, MAX_N + 1): spline = cubic_approx_spline(curve, n, max_err) if spline is not None: # done. go home return [(s.real, s.imag) for s in spline] raise ApproxNotFoundError(curve) @cython.locals(l=cython.int, last_i=cython.int, i=cython.int) def curves_to_quadratic(curves, max_errors): """Return quadratic Bezier splines approximating the input cubic Beziers. Args: curves: A sequence of *n* curves, each curve being a sequence of four 2D tuples. max_errors: A sequence of *n* floats representing the maximum permissible deviation from each of the cubic Bezier curves. Example:: >>> curves_to_quadratic( [ ... [ (50,50), (100,100), (150,100), (200,50) ], ... [ (75,50), (120,100), (150,75), (200,60) ] ... ], [1,1] ) [[(50.0, 50.0), (75.0, 75.0), (125.0, 91.66666666666666), (175.0, 75.0), (200.0, 50.0)], [(75.0, 50.0), (97.5, 75.0), (135.41666666666666, 82.08333333333333), (175.0, 67.5), (200.0, 60.0)]] The returned splines have "implied oncurve points" suitable for use in TrueType ``glif`` outlines - i.e. in the first spline returned above, the first quadratic segment runs from (50,50) to ( (75 + 125)/2 , (120 + 91.666..)/2 ) = (100, 83.333...). Returns: A list of splines, each spline being a list of 2D tuples. Raises: fontTools.cu2qu.Errors.ApproxNotFoundError: if no suitable approximation can be found for all curves with the given parameters. """ curves = [[complex(*p) for p in curve] for curve in curves] assert len(max_errors) == len(curves) l = len(curves) splines = [None] * l last_i = i = 0 n = 1 while True: spline = cubic_approx_spline(curves[i], n, max_errors[i]) if spline is None: if n == MAX_N: break n += 1 last_i = i continue splines[i] = spline i = (i + 1) % l if i == last_i: # done. go home return [[(s.real, s.imag) for s in spline] for spline in splines] raise ApproxNotFoundError(curves) if __name__ == '__main__': import random import timeit MAX_ERR = 5 def generate_curve(): return [ tuple(float(random.randint(0, 2048)) for coord in range(2)) for point in range(4)] def setup_curve_to_quadratic(): return generate_curve(), MAX_ERR def setup_curves_to_quadratic(): num_curves = 3 return ( [generate_curve() for curve in range(num_curves)], [MAX_ERR] * num_curves) def run_benchmark( benchmark_module, module, function, setup_suffix='', repeat=5, number=1000): setup_func = 'setup_' + function if setup_suffix: print('%s with %s:' % (function, setup_suffix), end='') setup_func += '_' + setup_suffix else: print('%s:' % function, end='') def wrapper(function, setup_func): function = globals()[function] setup_func = globals()[setup_func] def wrapped(): return function(*setup_func()) return wrapped results = timeit.repeat(wrapper(function, setup_func), repeat=repeat, number=number) print('\t%5.1fus' % (min(results) * 1000000. / number)) def main(): run_benchmark('cu2qu.benchmark', 'cu2qu', 'curve_to_quadratic') run_benchmark('cu2qu.benchmark', 'cu2qu', 'curves_to_quadratic') random.seed(1) main()