// polynomial for approximating e^x // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception deg = 5; // poly degree N = 128; // table entries b = log(2)/(2*N); // interval b = b + b*0x1p-16; // increase interval for non-nearest rounding (TOINT_NARROW) a = -b; // find polynomial with minimal abs error // return p that minimizes |exp(x) - poly(x) - x^d*p(x)| approx = proc(poly,d) { return remez(exp(x)-poly(x), deg-d, [a;b], x^d, 1e-10); }; // first 2 coeffs are fixed, iteratively find optimal double prec coeffs poly = 1 + x; for i from 2 to deg do { p = roundcoefficients(approx(poly,i), [|D ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("rel error:", accurateinfnorm(1-poly(x)/exp(x), [a;b], 30)); print("abs error:", accurateinfnorm(exp(x)-poly(x), [a;b], 30)); print("in [",a,b,"]"); // double interval error for non-nearest rounding print("rel2 error:", accurateinfnorm(1-poly(x)/exp(x), [2*a;2*b], 30)); print("abs2 error:", accurateinfnorm(exp(x)-poly(x), [2*a;2*b], 30)); print("in [",2*a,2*b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i);