//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard 'D', // Double-Precision Floating-Point instruction set extension. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // RISC-V specific DAG Nodes. //===----------------------------------------------------------------------===// def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_RISCVSplitF64 : SDTypeProfile<2, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, f64>]>; def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>; def RISCVSplitF64 : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>; //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPFMAD_rrr_frm : RVInstR4<0b01, opcode, (outs FPR64:$rd), (ins FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, frmarg:$funct3), opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">; class FPFMADDynFrmAlias : InstAlias; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPALUD_rr funct7, bits<3> funct3, string opcodestr> : RVInstR; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPALUD_rr_frm funct7, string opcodestr> : RVInstRFrm; class FPALUDDynFrmAlias : InstAlias; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPCmpD_rr funct3, string opcodestr> : RVInstR<0b1010001, funct3, OPC_OP_FP, (outs GPR:$rd), (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">, Sched<[WriteFCmp64, ReadFCmp64, ReadFCmp64]>; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtD] in { let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in def FLD : RVInstI<0b011, OPC_LOAD_FP, (outs FPR64:$rd), (ins GPR:$rs1, simm12:$imm12), "fld", "$rd, ${imm12}(${rs1})">, Sched<[WriteFLD64, ReadFMemBase]>; // Operands for stores are in the order srcreg, base, offset rather than // reflecting the order these fields are specified in the instruction // encoding. let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in def FSD : RVInstS<0b011, OPC_STORE_FP, (outs), (ins FPR64:$rs2, GPR:$rs1, simm12:$imm12), "fsd", "$rs2, ${imm12}(${rs1})">, Sched<[WriteFST64, ReadStoreData, ReadFMemBase]>; def FMADD_D : FPFMAD_rrr_frm, Sched<[WriteFMulAdd64, ReadFMulAdd64, ReadFMulAdd64, ReadFMulAdd64]>; def : FPFMADDynFrmAlias; def FMSUB_D : FPFMAD_rrr_frm, Sched<[WriteFMulSub64, ReadFMulSub64, ReadFMulSub64, ReadFMulSub64]>; def : FPFMADDynFrmAlias; def FNMSUB_D : FPFMAD_rrr_frm, Sched<[WriteFMulSub64, ReadFMulSub64, ReadFMulSub64, ReadFMulSub64]>; def : FPFMADDynFrmAlias; def FNMADD_D : FPFMAD_rrr_frm, Sched<[WriteFMulAdd64, ReadFMulAdd64, ReadFMulAdd64, ReadFMulAdd64]>; def : FPFMADDynFrmAlias; def FADD_D : FPALUD_rr_frm<0b0000001, "fadd.d">, Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>; def : FPALUDDynFrmAlias; def FSUB_D : FPALUD_rr_frm<0b0000101, "fsub.d">, Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>; def : FPALUDDynFrmAlias; def FMUL_D : FPALUD_rr_frm<0b0001001, "fmul.d">, Sched<[WriteFMul64, ReadFMul64, ReadFMul64]>; def : FPALUDDynFrmAlias; def FDIV_D : FPALUD_rr_frm<0b0001101, "fdiv.d">, Sched<[WriteFDiv64, ReadFDiv64, ReadFDiv64]>; def : FPALUDDynFrmAlias; def FSQRT_D : FPUnaryOp_r_frm<0b0101101, FPR64, FPR64, "fsqrt.d">, Sched<[WriteFSqrt64, ReadFSqrt64]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FSGNJ_D : FPALUD_rr<0b0010001, 0b000, "fsgnj.d">, Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>; def FSGNJN_D : FPALUD_rr<0b0010001, 0b001, "fsgnjn.d">, Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>; def FSGNJX_D : FPALUD_rr<0b0010001, 0b010, "fsgnjx.d">, Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>; def FMIN_D : FPALUD_rr<0b0010101, 0b000, "fmin.d">, Sched<[WriteFMinMax64, ReadFMinMax64, ReadFMinMax64]>; def FMAX_D : FPALUD_rr<0b0010101, 0b001, "fmax.d">, Sched<[WriteFMinMax64, ReadFMinMax64, ReadFMinMax64]>; def FCVT_S_D : FPUnaryOp_r_frm<0b0100000, FPR32, FPR64, "fcvt.s.d">, Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias; def FCVT_D_S : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR32, "fcvt.d.s">, Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]> { let rs2 = 0b00000; } def FEQ_D : FPCmpD_rr<0b010, "feq.d">; def FLT_D : FPCmpD_rr<0b001, "flt.d">; def FLE_D : FPCmpD_rr<0b000, "fle.d">; def FCLASS_D : FPUnaryOp_r<0b1110001, 0b001, GPR, FPR64, "fclass.d">, Sched<[WriteFClass64, ReadFClass64]> { let rs2 = 0b00000; } def FCVT_W_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.w.d">, Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FCVT_WU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.wu.d">, Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias; def FCVT_D_W : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.w">, Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> { let rs2 = 0b00000; } def FCVT_D_WU : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.wu">, Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> { let rs2 = 0b00001; } } // Predicates = [HasStdExtD] let Predicates = [HasStdExtD, IsRV64] in { def FCVT_L_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.l.d">, Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> { let rs2 = 0b00010; } def : FPUnaryOpDynFrmAlias; def FCVT_LU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.lu.d">, Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> { let rs2 = 0b00011; } def : FPUnaryOpDynFrmAlias; def FMV_X_D : FPUnaryOp_r<0b1110001, 0b000, GPR, FPR64, "fmv.x.d">, Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]> { let rs2 = 0b00000; } def FCVT_D_L : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.l">, Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> { let rs2 = 0b00010; } def : FPUnaryOpDynFrmAlias; def FCVT_D_LU : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.lu">, Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> { let rs2 = 0b00011; } def : FPUnaryOpDynFrmAlias; def FMV_D_X : FPUnaryOp_r<0b1111001, 0b000, FPR64, GPR, "fmv.d.x">, Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]> { let rs2 = 0b00000; } } // Predicates = [HasStdExtD, IsRV64] //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) //===----------------------------------------------------------------------===// let Predicates = [HasStdExtD] in { def : InstAlias<"fld $rd, (${rs1})", (FLD FPR64:$rd, GPR:$rs1, 0), 0>; def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>; def : InstAlias<"fmv.d $rd, $rs", (FSGNJ_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>; def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>; def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>; // fgt.d/fge.d are recognised by the GNU assembler but the canonical // flt.d/fle.d forms will always be printed. Therefore, set a zero weight. def : InstAlias<"fgt.d $rd, $rs, $rt", (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>; def : InstAlias<"fge.d $rd, $rs, $rt", (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>; def PseudoFLD : PseudoFloatLoad<"fld", FPR64>; def PseudoFSD : PseudoStore<"fsd", FPR64>; } // Predicates = [HasStdExtD] //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns //===----------------------------------------------------------------------===// class PatFpr64Fpr64 : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2)>; class PatFpr64Fpr64DynFrm : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2, 0b111)>; let Predicates = [HasStdExtD] in { /// Float conversion operations // f64 -> f32, f32 -> f64 def : Pat<(fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>; def : Pat<(fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>; // [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so // are defined later. /// Float arithmetic operations def : PatFpr64Fpr64DynFrm; def : PatFpr64Fpr64DynFrm; def : PatFpr64Fpr64DynFrm; def : PatFpr64Fpr64DynFrm; def : Pat<(fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>; def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>; def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>; def : PatFpr64Fpr64; def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>; def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>; def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2, 0b111))>; // fmadd: rs1 * rs2 + rs3 def : Pat<(fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3), (FMADD_D $rs1, $rs2, $rs3, 0b111)>; // fmsub: rs1 * rs2 - rs3 def : Pat<(fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)), (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>; // fnmsub: -rs1 * rs2 + rs3 def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3), (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>; // fnmadd: -rs1 * rs2 - rs3 def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)), (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>; // The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the // canonical NaN when giving a signaling NaN. This doesn't match the LLVM // behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the // draft 2.3 ISA spec changes the definition of fmin and fmax in a way that // matches LLVM's fminnum and fmaxnum // . def : PatFpr64Fpr64; def : PatFpr64Fpr64; /// Setcc def : PatFpr64Fpr64; def : PatFpr64Fpr64; def : PatFpr64Fpr64; def : PatFpr64Fpr64; def : PatFpr64Fpr64; def : PatFpr64Fpr64; // Define pattern expansions for setcc operations which aren't directly // handled by a RISC-V instruction and aren't expanded in the SelectionDAG // Legalizer. def : Pat<(seto FPR64:$rs1, FPR64:$rs2), (AND (FEQ_D FPR64:$rs1, FPR64:$rs1), (FEQ_D FPR64:$rs2, FPR64:$rs2))>; def : Pat<(seto FPR64:$rs1, FPR64:$rs1), (FEQ_D $rs1, $rs1)>; def : Pat<(setuo FPR64:$rs1, FPR64:$rs2), (SLTIU (AND (FEQ_D FPR64:$rs1, FPR64:$rs1), (FEQ_D FPR64:$rs2, FPR64:$rs2)), 1)>; def : Pat<(setuo FPR64:$rs1, FPR64:$rs1), (SLTIU (FEQ_D $rs1, $rs1), 1)>; def Select_FPR64_Using_CC_GPR : SelectCC_rrirr; /// Loads defm : LdPat; /// Stores defm : StPat; /// Pseudo-instructions needed for the soft-float ABI with RV32D // Moves two GPRs to an FPR. let usesCustomInserter = 1 in def BuildPairF64Pseudo : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2), [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>; // Moves an FPR to two GPRs. let usesCustomInserter = 1 in def SplitF64Pseudo : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src), [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>; } // Predicates = [HasStdExtD] let Predicates = [HasStdExtD, IsRV32] in { /// Float constants def : Pat<(f64 (fpimm0)), (FCVT_D_W X0)>; // double->[u]int. Round-to-zero must be used. def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_W_D FPR64:$rs1, 0b001)>; def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_WU_D FPR64:$rs1, 0b001)>; // [u]int->double. def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_W GPR:$rs1)>; def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_WU GPR:$rs1)>; } // Predicates = [HasStdExtD, IsRV32] let Predicates = [HasStdExtD, IsRV64] in { /// Float constants def : Pat<(f64 (fpimm0)), (FMV_D_X X0)>; // Moves (no conversion) def : Pat<(bitconvert GPR:$rs1), (FMV_D_X GPR:$rs1)>; def : Pat<(bitconvert FPR64:$rs1), (FMV_X_D FPR64:$rs1)>; // FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe // because fpto[u|s]i produce poison if the value can't fit into the target. // We match the single case below because fcvt.wu.d sign-extends its result so // is cheaper than fcvt.lu.d+sext.w. def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR64:$rs1)), i32), (FCVT_WU_D $rs1, 0b001)>; // [u]int32->fp def : Pat<(sint_to_fp (sexti32 GPR:$rs1)), (FCVT_D_W $rs1)>; def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_D_WU $rs1)>; def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_L_D FPR64:$rs1, 0b001)>; def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_LU_D FPR64:$rs1, 0b001)>; // [u]int64->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_L GPR:$rs1, 0b111)>; def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_LU GPR:$rs1, 0b111)>; } // Predicates = [HasStdExtD, IsRV64]