; RUN: opt -basic-aa -loop-accesses -analyze -enable-new-pm=0 < %s | FileCheck %s -check-prefix=LAA ; RUN: opt -passes='require,require,require,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=LAA ; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" ; For this loop: ; unsigned index = 0; ; for (int i = 0; i < n; i++) { ; A[2 * index] = A[2 * index] + B[i]; ; index++; ; } ; ; SCEV is unable to prove that A[2 * i] does not overflow. ; ; Analyzing the IR does not help us because the GEPs are not ; affine AddRecExprs. However, we can turn them into AddRecExprs ; using SCEV Predicates. ; ; Once we have an affine expression we need to add an additional NUSW ; to check that the pointers don't wrap since the GEPs are not ; inbound. ; LAA-LABEL: f1 ; LAA: Memory dependences are safe{{$}} ; LAA: SCEV assumptions: ; LAA-NEXT: {0,+,2}<%for.body> Added Flags: ; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: ; The expression for %mul_ext as analyzed by SCEV is ; (zext i32 {0,+,2}<%for.body> to i64) ; We have added the nusw flag to turn this expression into the SCEV expression: ; i64 {0,+,2}<%for.body> ; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: ; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64)) + %a) ; LAA-NEXT: --> {%a,+,4}<%for.body> ; LV-LABEL: f1 ; LV-LABEL: for.body.lver.check ; LV: [[BETrunc:%[^ ]*]] = trunc i64 [[BE:%[^ ]*]] to i32 ; LV-NEXT: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc]]) ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]] ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]] ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], 0 ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], 0 ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]] ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] ; LV-NEXT: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]]) ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]] ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]] ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]] ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]] ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]] ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph define void @f1(i16* noalias %a, i16* noalias %b, i64 %N) { entry: br label %for.body for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] %mul = mul i32 %ind1, 2 %mul_ext = zext i32 %mul to i64 %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext %loadA = load i16, i16* %arrayidxA, align 2 %arrayidxB = getelementptr i16, i16* %b, i64 %ind %loadB = load i16, i16* %arrayidxB, align 2 %add = mul i16 %loadA, %loadB store i16 %add, i16* %arrayidxA, align 2 %inc = add nuw nsw i64 %ind, 1 %inc1 = add i32 %ind1, 1 %exitcond = icmp eq i64 %inc, %N br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } ; For this loop: ; unsigned index = n; ; for (int i = 0; i < n; i++) { ; A[2 * index] = A[2 * index] + B[i]; ; index--; ; } ; ; the SCEV expression for 2 * index is not an AddRecExpr ; (and implictly not affine). However, we are able to make assumptions ; that will turn the expression into an affine one and continue the ; analysis. ; ; Once we have an affine expression we need to add an additional NUSW ; to check that the pointers don't wrap since the GEPs are not ; inbounds. ; ; This loop has a negative stride for A, and the nusw flag is required in ; order to properly extend the increment from i32 -4 to i64 -4. ; LAA-LABEL: f2 ; LAA: Memory dependences are safe{{$}} ; LAA: SCEV assumptions: ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: ; LAA-NEXT: {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body> Added Flags: ; The expression for %mul_ext as analyzed by SCEV is ; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) ; We have added the nusw flag to turn this expression into the following SCEV: ; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> ; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: ; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)) + %a) ; LAA-NEXT: --> {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body> ; LV-LABEL: f2 ; LV-LABEL: for.body.lver.check ; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], [[Start]] ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], [[Start]] ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] ; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]]) ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph define void @f2(i16* noalias %a, i16* noalias %b, i64 %N) { entry: %TruncN = trunc i64 %N to i32 br label %for.body for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] %mul = mul i32 %ind1, 2 %mul_ext = zext i32 %mul to i64 %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext %loadA = load i16, i16* %arrayidxA, align 2 %arrayidxB = getelementptr i16, i16* %b, i64 %ind %loadB = load i16, i16* %arrayidxB, align 2 %add = mul i16 %loadA, %loadB store i16 %add, i16* %arrayidxA, align 2 %inc = add nuw nsw i64 %ind, 1 %dec = sub i32 %ind1, 1 %exitcond = icmp eq i64 %inc, %N br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } ; We replicate the tests above, but this time sign extend 2 * index instead ; of zero extending it. ; LAA-LABEL: f3 ; LAA: Memory dependences are safe{{$}} ; LAA: SCEV assumptions: ; LAA-NEXT: {0,+,2}<%for.body> Added Flags: ; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: ; The expression for %mul_ext as analyzed by SCEV is ; i64 (sext i32 {0,+,2}<%for.body> to i64) ; We have added the nssw flag to turn this expression into the following SCEV: ; i64 {0,+,2}<%for.body> ; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: ; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64)) + %a) ; LAA-NEXT: --> {%a,+,4}<%for.body> ; LV-LABEL: f3 ; LV-LABEL: for.body.lver.check ; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]] ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]] ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], 0 ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], 0 ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]] ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] ; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]] ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]] ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]] ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]] ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]] ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph define void @f3(i16* noalias %a, i16* noalias %b, i64 %N) { entry: br label %for.body for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] %mul = mul i32 %ind1, 2 %mul_ext = sext i32 %mul to i64 %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext %loadA = load i16, i16* %arrayidxA, align 2 %arrayidxB = getelementptr i16, i16* %b, i64 %ind %loadB = load i16, i16* %arrayidxB, align 2 %add = mul i16 %loadA, %loadB store i16 %add, i16* %arrayidxA, align 2 %inc = add nuw nsw i64 %ind, 1 %inc1 = add i32 %ind1, 1 %exitcond = icmp eq i64 %inc, %N br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } ; LAA-LABEL: f4 ; LAA: Memory dependences are safe{{$}} ; LAA: SCEV assumptions: ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: ; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: ; The expression for %mul_ext as analyzed by SCEV is ; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) ; We have added the nssw flag to turn this expression into the following SCEV: ; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> ; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: ; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)) + %a) ; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> ; LV-LABEL: f4 ; LV-LABEL: for.body.lver.check ; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]] ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]] ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] ; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph define void @f4(i16* noalias %a, i16* noalias %b, i64 %N) { entry: %TruncN = trunc i64 %N to i32 br label %for.body for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] %mul = mul i32 %ind1, 2 %mul_ext = sext i32 %mul to i64 %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext %loadA = load i16, i16* %arrayidxA, align 2 %arrayidxB = getelementptr i16, i16* %b, i64 %ind %loadB = load i16, i16* %arrayidxB, align 2 %add = mul i16 %loadA, %loadB store i16 %add, i16* %arrayidxA, align 2 %inc = add nuw nsw i64 %ind, 1 %dec = sub i32 %ind1, 1 %exitcond = icmp eq i64 %inc, %N br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } ; The following function is similar to the one above, but has the GEP ; to pointer %A inbounds. The index %mul doesn't have the nsw flag. ; This means that the SCEV expression for %mul can wrap and we need ; a SCEV predicate to continue analysis. ; ; We can still analyze this by adding the required no wrap SCEV predicates. ; LAA-LABEL: f5 ; LAA: Memory dependences are safe{{$}} ; LAA: SCEV assumptions: ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: ; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: ; LAA: [PSE] %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul: ; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)) + %a) ; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> ; LV-LABEL: f5 ; LV-LABEL: for.body.lver.check ; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]] ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]] ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] ; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph define void @f5(i16* noalias %a, i16* noalias %b, i64 %N) { entry: %TruncN = trunc i64 %N to i32 br label %for.body for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] %mul = mul i32 %ind1, 2 %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul %loadA = load i16, i16* %arrayidxA, align 2 %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind %loadB = load i16, i16* %arrayidxB, align 2 %add = mul i16 %loadA, %loadB store i16 %add, i16* %arrayidxA, align 2 %inc = add nuw nsw i64 %ind, 1 %dec = sub i32 %ind1, 1 %exitcond = icmp eq i64 %inc, %N br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void }