; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc -mtriple=riscv32 -mattr=+f -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV32IF %s ; RUN: llc -mtriple=riscv64 -mattr=+f -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV64IF %s define float @flw(float *%a) nounwind { ; RV32IF-LABEL: flw: ; RV32IF: # %bb.0: ; RV32IF-NEXT: flw ft0, 0(a0) ; RV32IF-NEXT: flw ft1, 12(a0) ; RV32IF-NEXT: fadd.s ft0, ft0, ft1 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: flw: ; RV64IF: # %bb.0: ; RV64IF-NEXT: flw ft0, 0(a0) ; RV64IF-NEXT: flw ft1, 12(a0) ; RV64IF-NEXT: fadd.s ft0, ft0, ft1 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ret %1 = load float, float* %a %2 = getelementptr float, float* %a, i32 3 %3 = load float, float* %2 ; Use both loaded values in an FP op to ensure an flw is used, even for the ; soft float ABI %4 = fadd float %1, %3 ret float %4 } define void @fsw(float *%a, float %b, float %c) nounwind { ; Use %b and %c in an FP op to ensure floating point registers are used, even ; for the soft float ABI ; RV32IF-LABEL: fsw: ; RV32IF: # %bb.0: ; RV32IF-NEXT: fmv.w.x ft0, a2 ; RV32IF-NEXT: fmv.w.x ft1, a1 ; RV32IF-NEXT: fadd.s ft0, ft1, ft0 ; RV32IF-NEXT: fsw ft0, 0(a0) ; RV32IF-NEXT: fsw ft0, 32(a0) ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: fsw: ; RV64IF: # %bb.0: ; RV64IF-NEXT: fmv.w.x ft0, a2 ; RV64IF-NEXT: fmv.w.x ft1, a1 ; RV64IF-NEXT: fadd.s ft0, ft1, ft0 ; RV64IF-NEXT: fsw ft0, 0(a0) ; RV64IF-NEXT: fsw ft0, 32(a0) ; RV64IF-NEXT: ret %1 = fadd float %b, %c store float %1, float* %a %2 = getelementptr float, float* %a, i32 8 store float %1, float* %2 ret void } ; Check load and store to a global @G = global float 0.0 define float @flw_fsw_global(float %a, float %b) nounwind { ; Use %a and %b in an FP op to ensure floating point registers are used, even ; for the soft float ABI ; RV32IF-LABEL: flw_fsw_global: ; RV32IF: # %bb.0: ; RV32IF-NEXT: fmv.w.x ft0, a1 ; RV32IF-NEXT: fmv.w.x ft1, a0 ; RV32IF-NEXT: fadd.s ft0, ft1, ft0 ; RV32IF-NEXT: lui a0, %hi(G) ; RV32IF-NEXT: flw ft1, %lo(G)(a0) ; RV32IF-NEXT: fsw ft0, %lo(G)(a0) ; RV32IF-NEXT: addi a1, a0, %lo(G) ; RV32IF-NEXT: flw ft1, 36(a1) ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: fsw ft0, 36(a1) ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: flw_fsw_global: ; RV64IF: # %bb.0: ; RV64IF-NEXT: fmv.w.x ft0, a1 ; RV64IF-NEXT: fmv.w.x ft1, a0 ; RV64IF-NEXT: fadd.s ft0, ft1, ft0 ; RV64IF-NEXT: lui a0, %hi(G) ; RV64IF-NEXT: flw ft1, %lo(G)(a0) ; RV64IF-NEXT: fsw ft0, %lo(G)(a0) ; RV64IF-NEXT: addi a1, a0, %lo(G) ; RV64IF-NEXT: flw ft1, 36(a1) ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: fsw ft0, 36(a1) ; RV64IF-NEXT: ret %1 = fadd float %a, %b %2 = load volatile float, float* @G store float %1, float* @G %3 = getelementptr float, float* @G, i32 9 %4 = load volatile float, float* %3 store float %1, float* %3 ret float %1 } ; Ensure that 1 is added to the high 20 bits if bit 11 of the low part is 1 define float @flw_fsw_constant(float %a) nounwind { ; RV32IF-LABEL: flw_fsw_constant: ; RV32IF: # %bb.0: ; RV32IF-NEXT: lui a1, 912092 ; RV32IF-NEXT: flw ft0, -273(a1) ; RV32IF-NEXT: fmv.w.x ft1, a0 ; RV32IF-NEXT: fadd.s ft0, ft1, ft0 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: fsw ft0, -273(a1) ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: flw_fsw_constant: ; RV64IF: # %bb.0: ; RV64IF-NEXT: lui a1, 56 ; RV64IF-NEXT: addiw a1, a1, -1353 ; RV64IF-NEXT: slli a1, a1, 14 ; RV64IF-NEXT: flw ft0, -273(a1) ; RV64IF-NEXT: fmv.w.x ft1, a0 ; RV64IF-NEXT: fadd.s ft0, ft1, ft0 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: fsw ft0, -273(a1) ; RV64IF-NEXT: ret %1 = inttoptr i32 3735928559 to float* %2 = load volatile float, float* %1 %3 = fadd float %a, %2 store float %3, float* %1 ret float %3 } declare void @notdead(i8*) define float @flw_stack(float %a) nounwind { ; RV32IF-LABEL: flw_stack: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) ; RV32IF-NEXT: fmv.w.x ft0, a0 ; RV32IF-NEXT: fsw ft0, 4(sp) ; RV32IF-NEXT: addi a0, sp, 8 ; RV32IF-NEXT: call notdead ; RV32IF-NEXT: flw ft0, 8(sp) ; RV32IF-NEXT: flw ft1, 4(sp) ; RV32IF-NEXT: fadd.s ft0, ft0, ft1 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: lw ra, 12(sp) ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: flw_stack: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) ; RV64IF-NEXT: fmv.w.x ft0, a0 ; RV64IF-NEXT: fsw ft0, 0(sp) ; RV64IF-NEXT: addi a0, sp, 4 ; RV64IF-NEXT: call notdead ; RV64IF-NEXT: flw ft0, 4(sp) ; RV64IF-NEXT: flw ft1, 0(sp) ; RV64IF-NEXT: fadd.s ft0, ft0, ft1 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ld ra, 8(sp) ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = alloca float, align 4 %2 = bitcast float* %1 to i8* call void @notdead(i8* %2) %3 = load float, float* %1 %4 = fadd float %3, %a ; force load in to FPR32 ret float %4 } define void @fsw_stack(float %a, float %b) nounwind { ; RV32IF-LABEL: fsw_stack: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) ; RV32IF-NEXT: fmv.w.x ft0, a1 ; RV32IF-NEXT: fmv.w.x ft1, a0 ; RV32IF-NEXT: fadd.s ft0, ft1, ft0 ; RV32IF-NEXT: fsw ft0, 8(sp) ; RV32IF-NEXT: addi a0, sp, 8 ; RV32IF-NEXT: call notdead ; RV32IF-NEXT: lw ra, 12(sp) ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: fsw_stack: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) ; RV64IF-NEXT: fmv.w.x ft0, a1 ; RV64IF-NEXT: fmv.w.x ft1, a0 ; RV64IF-NEXT: fadd.s ft0, ft1, ft0 ; RV64IF-NEXT: fsw ft0, 4(sp) ; RV64IF-NEXT: addi a0, sp, 4 ; RV64IF-NEXT: call notdead ; RV64IF-NEXT: ld ra, 8(sp) ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = fadd float %a, %b ; force store from FPR32 %2 = alloca float, align 4 store float %1, float* %2 %3 = bitcast float* %2 to i8* call void @notdead(i8* %3) ret void }