; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt ; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt -wasm-disable-explicit-locals -wasm-keep-registers -mattr=+atomics,+sign-ext | FileCheck %s ; Currently all wasm atomic memory access instructions are sequentially ; consistent, so even if LLVM IR specifies weaker orderings than that, we ; should upgrade them to sequential ordering and treat them in the same way. target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128" target triple = "wasm32-unknown-unknown" ;===---------------------------------------------------------------------------- ; Atomic loads ;===---------------------------------------------------------------------------- ; The 'release' and 'acq_rel' orderings are not valid on load instructions. ; CHECK-LABEL: load_i32_unordered: ; CHECK: i32.atomic.load $push0=, 0($0){{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @load_i32_unordered(i32 *%p) { %v = load atomic i32, i32* %p unordered, align 4 ret i32 %v } ; CHECK-LABEL: load_i32_monotonic: ; CHECK: i32.atomic.load $push0=, 0($0){{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @load_i32_monotonic(i32 *%p) { %v = load atomic i32, i32* %p monotonic, align 4 ret i32 %v } ; CHECK-LABEL: load_i32_acquire: ; CHECK: i32.atomic.load $push0=, 0($0){{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @load_i32_acquire(i32 *%p) { %v = load atomic i32, i32* %p acquire, align 4 ret i32 %v } ; CHECK-LABEL: load_i32_seq_cst: ; CHECK: i32.atomic.load $push0=, 0($0){{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @load_i32_seq_cst(i32 *%p) { %v = load atomic i32, i32* %p seq_cst, align 4 ret i32 %v } ;===---------------------------------------------------------------------------- ; Atomic stores ;===---------------------------------------------------------------------------- ; The 'acquire' and 'acq_rel' orderings aren’t valid on store instructions. ; CHECK-LABEL: store_i32_unordered: ; CHECK-NEXT: .functype store_i32_unordered (i32, i32) -> (){{$}} ; CHECK-NEXT: i32.atomic.store 0($0), $1{{$}} ; CHECK-NEXT: return{{$}} define void @store_i32_unordered(i32 *%p, i32 %v) { store atomic i32 %v, i32* %p unordered, align 4 ret void } ; CHECK-LABEL: store_i32_monotonic: ; CHECK-NEXT: .functype store_i32_monotonic (i32, i32) -> (){{$}} ; CHECK-NEXT: i32.atomic.store 0($0), $1{{$}} ; CHECK-NEXT: return{{$}} define void @store_i32_monotonic(i32 *%p, i32 %v) { store atomic i32 %v, i32* %p monotonic, align 4 ret void } ; CHECK-LABEL: store_i32_release: ; CHECK-NEXT: .functype store_i32_release (i32, i32) -> (){{$}} ; CHECK-NEXT: i32.atomic.store 0($0), $1{{$}} ; CHECK-NEXT: return{{$}} define void @store_i32_release(i32 *%p, i32 %v) { store atomic i32 %v, i32* %p release, align 4 ret void } ; CHECK-LABEL: store_i32_seq_cst: ; CHECK-NEXT: .functype store_i32_seq_cst (i32, i32) -> (){{$}} ; CHECK-NEXT: i32.atomic.store 0($0), $1{{$}} ; CHECK-NEXT: return{{$}} define void @store_i32_seq_cst(i32 *%p, i32 %v) { store atomic i32 %v, i32* %p seq_cst, align 4 ret void } ;===---------------------------------------------------------------------------- ; Atomic read-modify-writes ;===---------------------------------------------------------------------------- ; Out of several binary RMW instructions, here we test 'add' as an example. ; The 'unordered' ordering is not valid on atomicrmw instructions. ; CHECK-LABEL: add_i32_monotonic: ; CHECK-NEXT: .functype add_i32_monotonic (i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.add $push0=, 0($0), $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @add_i32_monotonic(i32* %p, i32 %v) { %old = atomicrmw add i32* %p, i32 %v monotonic ret i32 %old } ; CHECK-LABEL: add_i32_acquire: ; CHECK-NEXT: .functype add_i32_acquire (i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.add $push0=, 0($0), $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @add_i32_acquire(i32* %p, i32 %v) { %old = atomicrmw add i32* %p, i32 %v acquire ret i32 %old } ; CHECK-LABEL: add_i32_release: ; CHECK-NEXT: .functype add_i32_release (i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.add $push0=, 0($0), $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @add_i32_release(i32* %p, i32 %v) { %old = atomicrmw add i32* %p, i32 %v release ret i32 %old } ; CHECK-LABEL: add_i32_acq_rel: ; CHECK-NEXT: .functype add_i32_acq_rel (i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.add $push0=, 0($0), $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @add_i32_acq_rel(i32* %p, i32 %v) { %old = atomicrmw add i32* %p, i32 %v acq_rel ret i32 %old } ; CHECK-LABEL: add_i32_seq_cst: ; CHECK-NEXT: .functype add_i32_seq_cst (i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.add $push0=, 0($0), $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @add_i32_seq_cst(i32* %p, i32 %v) { %old = atomicrmw add i32* %p, i32 %v seq_cst ret i32 %old } ; Ternary RMW instruction: cmpxchg ; The success and failure ordering arguments specify how this cmpxchg ; synchronizes with other atomic operations. Both ordering parameters must be at ; least monotonic, the ordering constraint on failure must be no stronger than ; that on success, and the failure ordering cannot be either release or acq_rel. ; CHECK-LABEL: cmpxchg_i32_monotonic_monotonic: ; CHECK-NEXT: .functype cmpxchg_i32_monotonic_monotonic (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_monotonic_monotonic(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new monotonic monotonic %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_acquire_monotonic: ; CHECK-NEXT: .functype cmpxchg_i32_acquire_monotonic (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_acquire_monotonic(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new acquire monotonic %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_release_monotonic: ; CHECK-NEXT: .functype cmpxchg_i32_release_monotonic (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_release_monotonic(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new release monotonic %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_acq_rel_monotonic: ; CHECK-NEXT: .functype cmpxchg_i32_acq_rel_monotonic (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_acq_rel_monotonic(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new acq_rel monotonic %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_seq_cst_monotonic: ; CHECK-NEXT: .functype cmpxchg_i32_seq_cst_monotonic (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_seq_cst_monotonic(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new seq_cst monotonic %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_acquire_acquire: ; CHECK-NEXT: .functype cmpxchg_i32_acquire_acquire (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_acquire_acquire(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new acquire acquire %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_release_acquire: ; CHECK-NEXT: .functype cmpxchg_i32_release_acquire (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_release_acquire(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new release acquire %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_acq_rel_acquire: ; CHECK-NEXT: .functype cmpxchg_i32_acq_rel_acquire (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_acq_rel_acquire(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new acq_rel acquire %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_seq_cst_acquire: ; CHECK-NEXT: .functype cmpxchg_i32_seq_cst_acquire (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_seq_cst_acquire(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new seq_cst acquire %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old } ; CHECK-LABEL: cmpxchg_i32_seq_cst_seq_cst: ; CHECK-NEXT: .functype cmpxchg_i32_seq_cst_seq_cst (i32, i32, i32) -> (i32){{$}} ; CHECK: i32.atomic.rmw.cmpxchg $push0=, 0($0), $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @cmpxchg_i32_seq_cst_seq_cst(i32* %p, i32 %exp, i32 %new) { %pair = cmpxchg i32* %p, i32 %exp, i32 %new seq_cst seq_cst %old = extractvalue { i32, i1 } %pair, 0 ret i32 %old }