; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -correlated-propagation -S | FileCheck %s target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64" target triple = "thumbv7m-arm-none-eabi" define void @h(i32* nocapture %p, i32 %x) local_unnamed_addr #0 { ; CHECK-LABEL: @h( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[X:%.*]], 0 ; CHECK-NEXT: br i1 [[CMP]], label [[IF_THEN:%.*]], label [[IF_END:%.*]] ; CHECK: if.then: ; CHECK-NEXT: [[REM21:%.*]] = urem i32 [[X]], 10 ; CHECK-NEXT: store i32 [[REM21]], i32* [[P:%.*]], align 4 ; CHECK-NEXT: br label [[IF_END]] ; CHECK: if.end: ; CHECK-NEXT: ret void ; entry: %cmp = icmp sgt i32 %x, 0 br i1 %cmp, label %if.then, label %if.end if.then: %rem2 = srem i32 %x, 10 store i32 %rem2, i32* %p, align 4 br label %if.end if.end: ret void } ; looping case where loop has exactly one block ; at the point of srem, we know that %a is always greater than 0, ; because of the assume before it, so we can transform it to urem. declare void @llvm.assume(i1) define void @test4(i32 %n) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 0 ; CHECK-NEXT: br i1 [[CMP]], label [[LOOP:%.*]], label [[EXIT:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[A:%.*]] = phi i32 [ [[N]], [[ENTRY:%.*]] ], [ [[REM1:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[COND:%.*]] = icmp sgt i32 [[A]], 4 ; CHECK-NEXT: call void @llvm.assume(i1 [[COND]]) ; CHECK-NEXT: [[REM1]] = urem i32 [[A]], 17 ; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp sgt i32 [[REM1]], 8 ; CHECK-NEXT: br i1 [[LOOPCOND]], label [[LOOP]], label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: %cmp = icmp sgt i32 %n, 0 br i1 %cmp, label %loop, label %exit loop: %a = phi i32 [ %n, %entry ], [ %rem, %loop ] %cond = icmp sgt i32 %a, 4 call void @llvm.assume(i1 %cond) %rem = srem i32 %a, 17 %loopcond = icmp sgt i32 %rem, 8 br i1 %loopcond, label %loop, label %exit exit: ret void } ; Now, let's try various domain combinations for operands. define i8 @test5_pos_pos(i8 %x, i8 %y) { ; CHECK-LABEL: @test5_pos_pos( ; CHECK-NEXT: [[C0:%.*]] = icmp sge i8 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i8 [[Y:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[REM1:%.*]] = urem i8 [[X]], [[Y]] ; CHECK-NEXT: ret i8 [[REM1]] ; %c0 = icmp sge i8 %x, 0 call void @llvm.assume(i1 %c0) %c1 = icmp sge i8 %y, 0 call void @llvm.assume(i1 %c1) %rem = srem i8 %x, %y ret i8 %rem } define i8 @test6_pos_neg(i8 %x, i8 %y) { ; CHECK-LABEL: @test6_pos_neg( ; CHECK-NEXT: [[C0:%.*]] = icmp sge i8 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sle i8 [[Y:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[Y_NONNEG:%.*]] = sub i8 0, [[Y]] ; CHECK-NEXT: [[REM1:%.*]] = urem i8 [[X]], [[Y_NONNEG]] ; CHECK-NEXT: ret i8 [[REM1]] ; %c0 = icmp sge i8 %x, 0 call void @llvm.assume(i1 %c0) %c1 = icmp sle i8 %y, 0 call void @llvm.assume(i1 %c1) %rem = srem i8 %x, %y ret i8 %rem } define i8 @test7_neg_pos(i8 %x, i8 %y) { ; CHECK-LABEL: @test7_neg_pos( ; CHECK-NEXT: [[C0:%.*]] = icmp sle i8 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i8 [[Y:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[X_NONNEG:%.*]] = sub i8 0, [[X]] ; CHECK-NEXT: [[REM1:%.*]] = urem i8 [[X_NONNEG]], [[Y]] ; CHECK-NEXT: [[REM1_NEG:%.*]] = sub i8 0, [[REM1]] ; CHECK-NEXT: ret i8 [[REM1_NEG]] ; %c0 = icmp sle i8 %x, 0 call void @llvm.assume(i1 %c0) %c1 = icmp sge i8 %y, 0 call void @llvm.assume(i1 %c1) %rem = srem i8 %x, %y ret i8 %rem } define i8 @test8_neg_neg(i8 %x, i8 %y) { ; CHECK-LABEL: @test8_neg_neg( ; CHECK-NEXT: [[C0:%.*]] = icmp sle i8 [[X:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sle i8 [[Y:%.*]], 0 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[X_NONNEG:%.*]] = sub i8 0, [[X]] ; CHECK-NEXT: [[Y_NONNEG:%.*]] = sub i8 0, [[Y]] ; CHECK-NEXT: [[REM1:%.*]] = urem i8 [[X_NONNEG]], [[Y_NONNEG]] ; CHECK-NEXT: [[REM1_NEG:%.*]] = sub i8 0, [[REM1]] ; CHECK-NEXT: ret i8 [[REM1_NEG]] ; %c0 = icmp sle i8 %x, 0 call void @llvm.assume(i1 %c0) %c1 = icmp sle i8 %y, 0 call void @llvm.assume(i1 %c1) %rem = srem i8 %x, %y ret i8 %rem } ; After making remainder unsigned, can we narrow it? define i16 @test9_narrow(i16 %x, i16 %y) { ; CHECK-LABEL: @test9_narrow( ; CHECK-NEXT: [[C0:%.*]] = icmp ult i16 [[X:%.*]], 128 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp ult i16 [[Y:%.*]], 128 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[REM1_LHS_TRUNC:%.*]] = trunc i16 [[X]] to i8 ; CHECK-NEXT: [[REM1_RHS_TRUNC:%.*]] = trunc i16 [[Y]] to i8 ; CHECK-NEXT: [[REM12:%.*]] = urem i8 [[REM1_LHS_TRUNC]], [[REM1_RHS_TRUNC]] ; CHECK-NEXT: [[REM1_ZEXT:%.*]] = zext i8 [[REM12]] to i16 ; CHECK-NEXT: ret i16 [[REM1_ZEXT]] ; %c0 = icmp ult i16 %x, 128 call void @llvm.assume(i1 %c0) %c1 = icmp ult i16 %y, 128 call void @llvm.assume(i1 %c1) %rem = srem i16 %x, %y ret i16 %rem } ; Ok, but what about narrowing srem in general? ; If both operands are i15, it's uncontroversial - we can truncate to i16 define i64 @test11_i15_i15(i64 %x, i64 %y) { ; CHECK-LABEL: @test11_i15_i15( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 16383 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -16384 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 16383 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -16384 call void @llvm.assume(i1 %c3) %div = srem i64 %x, %y ret i64 %div } ; But if operands are i16, we can only truncate to i32, because we can't ; rule out UB of i16 INT_MIN s/ i16 -1 define i64 @test12_i16_i16(i64 %x, i64 %y) { ; CHECK-LABEL: @test12_i16_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32 ; CHECK-NEXT: [[DIV1:%.*]] = srem i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 32767 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -32768 call void @llvm.assume(i1 %c3) %div = srem i64 %x, %y ret i64 %div } ; But if divident is i16, and divisor is u15, then we know that i16 is UB-safe. define i64 @test13_i16_u15(i64 %x, i64 %y) { ; CHECK-LABEL: @test13_i16_u15( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp ule i64 %y, 32767 call void @llvm.assume(i1 %c2) %div = srem i64 %x, %y ret i64 %div } ; And likewise, if we know that if the divident is never i16 INT_MIN, ; we can truncate to i16. define i64 @test14_i16safe_i16(i64 %x, i64 %y) { ; CHECK-LABEL: @test14_i16safe_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sgt i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 32767 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -32768 call void @llvm.assume(i1 %c3) %div = srem i64 %x, %y ret i64 %div } ; Of course, both of the conditions can happen at once. define i64 @test15_i16safe_u15(i64 %x, i64 %y) { ; CHECK-LABEL: @test15_i16safe_u15( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 32767 call void @llvm.assume(i1 %c0) %c1 = icmp sgt i64 %x, -32768 call void @llvm.assume(i1 %c1) %c2 = icmp ule i64 %y, 32767 call void @llvm.assume(i1 %c2) %div = srem i64 %x, %y ret i64 %div } ; We at most truncate to i8 define i64 @test16_i4_i4(i64 %x, i64 %y) { ; CHECK-LABEL: @test16_i4_i4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 3 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -4 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 3 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -4 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i8 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i8 ; CHECK-NEXT: [[DIV1:%.*]] = srem i8 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i8 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 3 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -4 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 3 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -4 call void @llvm.assume(i1 %c3) %div = srem i64 %x, %y ret i64 %div } ; And we round up to the powers of two define i64 @test17_i9_i9(i64 %x, i64 %y) { ; CHECK-LABEL: @test17_i9_i9( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16 ; CHECK-NEXT: [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 255 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -256 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 255 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -256 call void @llvm.assume(i1 %c3) %div = srem i64 %x, %y ret i64 %div } ; Don't widen the operation to the next power of two if it wasn't a power of two. define i9 @test18_i9_i9(i9 %x, i9 %y) { ; CHECK-LABEL: @test18_i9_i9( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i9 [[X:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i9 [[X]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i9 [[Y:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i9 [[Y]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV:%.*]] = srem i9 [[X]], [[Y]] ; CHECK-NEXT: ret i9 [[DIV]] ; entry: %c0 = icmp sle i9 %x, 255 call void @llvm.assume(i1 %c0) %c1 = icmp sge i9 %x, -256 call void @llvm.assume(i1 %c1) %c2 = icmp sle i9 %y, 255 call void @llvm.assume(i1 %c2) %c3 = icmp sge i9 %y, -256 call void @llvm.assume(i1 %c3) %div = srem i9 %x, %y ret i9 %div } define i10 @test19_i10_i10(i10 %x, i10 %y) { ; CHECK-LABEL: @test19_i10_i10( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i10 [[X:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i10 [[X]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i10 [[Y:%.*]], 255 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i10 [[Y]], -256 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV:%.*]] = srem i10 [[X]], [[Y]] ; CHECK-NEXT: ret i10 [[DIV]] ; entry: %c0 = icmp sle i10 %x, 255 call void @llvm.assume(i1 %c0) %c1 = icmp sge i10 %x, -256 call void @llvm.assume(i1 %c1) %c2 = icmp sle i10 %y, 255 call void @llvm.assume(i1 %c2) %c3 = icmp sge i10 %y, -256 call void @llvm.assume(i1 %c3) %div = srem i10 %x, %y ret i10 %div } ; Note that we need to take the maximal bitwidth, in which both of the operands are representable! define i64 @test20_i16_i18(i64 %x, i64 %y) { ; CHECK-LABEL: @test20_i16_i18( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 65535 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -65536 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32 ; CHECK-NEXT: [[DIV1:%.*]] = srem i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 16383 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -16384 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 65535 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -65536 call void @llvm.assume(i1 %c3) %div = srem i64 %x, %y ret i64 %div } define i64 @test21_i18_i16(i64 %x, i64 %y) { ; CHECK-LABEL: @test21_i18_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 65535 ; CHECK-NEXT: call void @llvm.assume(i1 [[C0]]) ; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -65536 ; CHECK-NEXT: call void @llvm.assume(i1 [[C1]]) ; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383 ; CHECK-NEXT: call void @llvm.assume(i1 [[C2]]) ; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384 ; CHECK-NEXT: call void @llvm.assume(i1 [[C3]]) ; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32 ; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32 ; CHECK-NEXT: [[DIV1:%.*]] = srem i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]] ; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64 ; CHECK-NEXT: ret i64 [[DIV_SEXT]] ; entry: %c0 = icmp sle i64 %x, 65535 call void @llvm.assume(i1 %c0) %c1 = icmp sge i64 %x, -65536 call void @llvm.assume(i1 %c1) %c2 = icmp sle i64 %y, 16383 call void @llvm.assume(i1 %c2) %c3 = icmp sge i64 %y, -16384 call void @llvm.assume(i1 %c3) %div = srem i64 %x, %y ret i64 %div }