; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -instcombine -S -mtriple=arm -o - %s | FileCheck %s target datalayout = "e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64" declare i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1>) declare i32 @llvm.arm.mve.pred.v2i.v8i1(<8 x i1>) declare i32 @llvm.arm.mve.pred.v2i.v16i1(<16 x i1>) declare <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32) declare <8 x i1> @llvm.arm.mve.pred.i2v.v8i1(i32) declare <16 x i1> @llvm.arm.mve.pred.i2v.v16i1(i32) ; Round-trip conversions from predicate vector to i32 back to the same ; size of vector should be eliminated. define <4 x i1> @v2i2v_4(<4 x i1> %vin) { ; CHECK-LABEL: @v2i2v_4( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret <4 x i1> [[VIN:%.*]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vin) %vout = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %int) ret <4 x i1> %vout } define <8 x i1> @v2i2v_8(<8 x i1> %vin) { ; CHECK-LABEL: @v2i2v_8( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret <8 x i1> [[VIN:%.*]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v8i1(<8 x i1> %vin) %vout = call <8 x i1> @llvm.arm.mve.pred.i2v.v8i1(i32 %int) ret <8 x i1> %vout } define <16 x i1> @v2i2v_16(<16 x i1> %vin) { ; CHECK-LABEL: @v2i2v_16( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret <16 x i1> [[VIN:%.*]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v16i1(<16 x i1> %vin) %vout = call <16 x i1> @llvm.arm.mve.pred.i2v.v16i1(i32 %int) ret <16 x i1> %vout } ; Conversions from a predicate vector to i32 and then to a _different_ ; size of predicate vector should be left alone. define <16 x i1> @v2i2v_4_16(<4 x i1> %vin) { ; CHECK-LABEL: @v2i2v_4_16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INT:%.*]] = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> [[VIN:%.*]]), !range !0 ; CHECK-NEXT: [[VOUT:%.*]] = call <16 x i1> @llvm.arm.mve.pred.i2v.v16i1(i32 [[INT]]) ; CHECK-NEXT: ret <16 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vin) %vout = call <16 x i1> @llvm.arm.mve.pred.i2v.v16i1(i32 %int) ret <16 x i1> %vout } define <4 x i1> @v2i2v_8_4(<8 x i1> %vin) { ; CHECK-LABEL: @v2i2v_8_4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INT:%.*]] = call i32 @llvm.arm.mve.pred.v2i.v8i1(<8 x i1> [[VIN:%.*]]), !range !0 ; CHECK-NEXT: [[VOUT:%.*]] = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 [[INT]]) ; CHECK-NEXT: ret <4 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v8i1(<8 x i1> %vin) %vout = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %int) ret <4 x i1> %vout } define <8 x i1> @v2i2v_16_8(<16 x i1> %vin) { ; CHECK-LABEL: @v2i2v_16_8( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INT:%.*]] = call i32 @llvm.arm.mve.pred.v2i.v16i1(<16 x i1> [[VIN:%.*]]), !range !0 ; CHECK-NEXT: [[VOUT:%.*]] = call <8 x i1> @llvm.arm.mve.pred.i2v.v8i1(i32 [[INT]]) ; CHECK-NEXT: ret <8 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v16i1(<16 x i1> %vin) %vout = call <8 x i1> @llvm.arm.mve.pred.i2v.v8i1(i32 %int) ret <8 x i1> %vout } ; Round-trip conversions from i32 to predicate vector back to i32 ; should be eliminated. define i32 @i2v2i_4(i32 %iin) { ; CHECK-LABEL: @i2v2i_4( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret i32 [[IIN:%.*]] ; entry: %vec = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %iin) %iout = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vec) ret i32 %iout } define i32 @i2v2i_8(i32 %iin) { ; CHECK-LABEL: @i2v2i_8( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret i32 [[IIN:%.*]] ; entry: %vec = call <8 x i1> @llvm.arm.mve.pred.i2v.v8i1(i32 %iin) %iout = call i32 @llvm.arm.mve.pred.v2i.v8i1(<8 x i1> %vec) ret i32 %iout } define i32 @i2v2i_16(i32 %iin) { ; CHECK-LABEL: @i2v2i_16( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret i32 [[IIN:%.*]] ; entry: %vec = call <16 x i1> @llvm.arm.mve.pred.i2v.v16i1(i32 %iin) %iout = call i32 @llvm.arm.mve.pred.v2i.v16i1(<16 x i1> %vec) ret i32 %iout } ; v2i leaves the top 16 bits clear. So a trunc/zext pair applied to ; its output, going via i16, can be completely eliminated - but not ; one going via i8. Similarly with other methods of clearing the top ; bits, like bitwise and. define i32 @v2i_truncext_i16(<4 x i1> %vin) { ; CHECK-LABEL: @v2i_truncext_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[WIDE1:%.*]] = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> [[VIN:%.*]]), !range !0 ; CHECK-NEXT: ret i32 [[WIDE1]] ; entry: %wide1 = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vin) %narrow = trunc i32 %wide1 to i16 %wide2 = zext i16 %narrow to i32 ret i32 %wide2 } define i32 @v2i_truncext_i8(<4 x i1> %vin) { ; CHECK-LABEL: @v2i_truncext_i8( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[WIDE1:%.*]] = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> [[VIN:%.*]]), !range !0 ; CHECK-NEXT: [[WIDE2:%.*]] = and i32 [[WIDE1]], 255 ; CHECK-NEXT: ret i32 [[WIDE2]] ; entry: %wide1 = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vin) %narrow = trunc i32 %wide1 to i8 %wide2 = zext i8 %narrow to i32 ret i32 %wide2 } define i32 @v2i_and_16(<4 x i1> %vin) { ; CHECK-LABEL: @v2i_and_16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[WIDE1:%.*]] = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> [[VIN:%.*]]), !range !0 ; CHECK-NEXT: ret i32 [[WIDE1]] ; entry: %wide1 = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vin) %wide2 = and i32 %wide1, 65535 ret i32 %wide2 } define i32 @v2i_and_15(<4 x i1> %vin) { ; CHECK-LABEL: @v2i_and_15( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[WIDE1:%.*]] = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> [[VIN:%.*]]), !range !0 ; CHECK-NEXT: [[WIDE2:%.*]] = and i32 [[WIDE1]], 32767 ; CHECK-NEXT: ret i32 [[WIDE2]] ; entry: %wide1 = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vin) %wide2 = and i32 %wide1, 32767 ret i32 %wide2 } ; i2v doesn't use the top bits of its input. So the same operations ; on a value that's about to be passed to i2v can be eliminated. define <4 x i1> @i2v_truncext_i16(i32 %wide1) { ; CHECK-LABEL: @i2v_truncext_i16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[VOUT:%.*]] = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 [[WIDE1:%.*]]) ; CHECK-NEXT: ret <4 x i1> [[VOUT]] ; entry: %narrow = trunc i32 %wide1 to i16 %wide2 = zext i16 %narrow to i32 %vout = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %wide2) ret <4 x i1> %vout } define <4 x i1> @i2v_truncext_i8(i32 %wide1) { ; CHECK-LABEL: @i2v_truncext_i8( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[WIDE2:%.*]] = and i32 [[WIDE1:%.*]], 255 ; CHECK-NEXT: [[VOUT:%.*]] = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 [[WIDE2]]) ; CHECK-NEXT: ret <4 x i1> [[VOUT]] ; entry: %narrow = trunc i32 %wide1 to i8 %wide2 = zext i8 %narrow to i32 %vout = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %wide2) ret <4 x i1> %vout } define <4 x i1> @i2v_and_16(i32 %wide1) { ; CHECK-LABEL: @i2v_and_16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[VOUT:%.*]] = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 [[WIDE1:%.*]]) ; CHECK-NEXT: ret <4 x i1> [[VOUT]] ; entry: %wide2 = and i32 %wide1, 65535 %vout = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %wide2) ret <4 x i1> %vout } define <4 x i1> @i2v_and_15(i32 %wide1) { ; CHECK-LABEL: @i2v_and_15( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[WIDE2:%.*]] = and i32 [[WIDE1:%.*]], 32767 ; CHECK-NEXT: [[VOUT:%.*]] = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 [[WIDE2]]) ; CHECK-NEXT: ret <4 x i1> [[VOUT]] ; entry: %wide2 = and i32 %wide1, 32767 %vout = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %wide2) ret <4 x i1> %vout } ; If a predicate vector is round-tripped to an integer and back, and ; complemented while it's in integer form, we should collapse that to ; a complement of the vector itself. (Rationale: this is likely to ; allow it to be code-generated as MVE VPNOT.) define <4 x i1> @vpnot_4(<4 x i1> %vin) { ; CHECK-LABEL: @vpnot_4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[VOUT:%.*]] = xor <4 x i1> [[VIN:%.*]], ; CHECK-NEXT: ret <4 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vin) %flipped = xor i32 %int, 65535 %vout = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %flipped) ret <4 x i1> %vout } define <8 x i1> @vpnot_8(<8 x i1> %vin) { ; CHECK-LABEL: @vpnot_8( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[VOUT:%.*]] = xor <8 x i1> [[VIN:%.*]], ; CHECK-NEXT: ret <8 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v8i1(<8 x i1> %vin) %flipped = xor i32 %int, 65535 %vout = call <8 x i1> @llvm.arm.mve.pred.i2v.v8i1(i32 %flipped) ret <8 x i1> %vout } define <16 x i1> @vpnot_16(<16 x i1> %vin) { ; CHECK-LABEL: @vpnot_16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[VOUT:%.*]] = xor <16 x i1> [[VIN:%.*]], ; CHECK-NEXT: ret <16 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v16i1(<16 x i1> %vin) %flipped = xor i32 %int, 65535 %vout = call <16 x i1> @llvm.arm.mve.pred.i2v.v16i1(i32 %flipped) ret <16 x i1> %vout } ; And this still works even if the i32 is narrowed to i16 and back on ; opposite sides of the xor. define <4 x i1> @vpnot_narrow_4(<4 x i1> %vin) { ; CHECK-LABEL: @vpnot_narrow_4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[VOUT:%.*]] = xor <4 x i1> [[VIN:%.*]], ; CHECK-NEXT: ret <4 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v4i1(<4 x i1> %vin) %narrow = trunc i32 %int to i16 %flipped_narrow = xor i16 %narrow, -1 %flipped = zext i16 %flipped_narrow to i32 %vout = call <4 x i1> @llvm.arm.mve.pred.i2v.v4i1(i32 %flipped) ret <4 x i1> %vout } define <8 x i1> @vpnot_narrow_8(<8 x i1> %vin) { ; CHECK-LABEL: @vpnot_narrow_8( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[VOUT:%.*]] = xor <8 x i1> [[VIN:%.*]], ; CHECK-NEXT: ret <8 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v8i1(<8 x i1> %vin) %narrow = trunc i32 %int to i16 %flipped_narrow = xor i16 %narrow, -1 %flipped = zext i16 %flipped_narrow to i32 %vout = call <8 x i1> @llvm.arm.mve.pred.i2v.v8i1(i32 %flipped) ret <8 x i1> %vout } define <16 x i1> @vpnot_narrow_16(<16 x i1> %vin) { ; CHECK-LABEL: @vpnot_narrow_16( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[VOUT:%.*]] = xor <16 x i1> [[VIN:%.*]], ; CHECK-NEXT: ret <16 x i1> [[VOUT]] ; entry: %int = call i32 @llvm.arm.mve.pred.v2i.v16i1(<16 x i1> %vin) %narrow = trunc i32 %int to i16 %flipped_narrow = xor i16 %narrow, -1 %flipped = zext i16 %flipped_narrow to i32 %vout = call <16 x i1> @llvm.arm.mve.pred.i2v.v16i1(i32 %flipped) ret <16 x i1> %vout }