; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instcombine -S -instcombine-infinite-loop-threshold=2 | FileCheck %s target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-unknown-linux-gnu" declare void @llvm.assume(i1) #1 ; Check that the alignment has been upgraded and that the assume has not ; been removed: define i32 @foo1(i32* %a) #0 { ; CHECK-LABEL: @foo1( ; CHECK-NEXT: [[T0:%.*]] = load i32, i32* [[A:%.*]], align 32 ; CHECK-NEXT: [[PTRINT:%.*]] = ptrtoint i32* [[A]] to i64 ; CHECK-NEXT: [[MASKEDPTR:%.*]] = and i64 [[PTRINT]], 31 ; CHECK-NEXT: [[MASKCOND:%.*]] = icmp eq i64 [[MASKEDPTR]], 0 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[MASKCOND]]) ; CHECK-NEXT: ret i32 [[T0]] ; %t0 = load i32, i32* %a, align 4 %ptrint = ptrtoint i32* %a to i64 %maskedptr = and i64 %ptrint, 31 %maskcond = icmp eq i64 %maskedptr, 0 tail call void @llvm.assume(i1 %maskcond) ret i32 %t0 } ; Same check as in @foo1, but make sure it works if the assume is first too. define i32 @foo2(i32* %a) #0 { ; CHECK-LABEL: @foo2( ; CHECK-NEXT: [[PTRINT:%.*]] = ptrtoint i32* [[A:%.*]] to i64 ; CHECK-NEXT: [[MASKEDPTR:%.*]] = and i64 [[PTRINT]], 31 ; CHECK-NEXT: [[MASKCOND:%.*]] = icmp eq i64 [[MASKEDPTR]], 0 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[MASKCOND]]) ; CHECK-NEXT: [[T0:%.*]] = load i32, i32* [[A]], align 32 ; CHECK-NEXT: ret i32 [[T0]] ; %ptrint = ptrtoint i32* %a to i64 %maskedptr = and i64 %ptrint, 31 %maskcond = icmp eq i64 %maskedptr, 0 tail call void @llvm.assume(i1 %maskcond) %t0 = load i32, i32* %a, align 4 ret i32 %t0 } define i32 @simple(i32 %a) #1 { ; CHECK-LABEL: @simple( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[A:%.*]], 4 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i32 4 ; %cmp = icmp eq i32 %a, 4 tail call void @llvm.assume(i1 %cmp) ret i32 %a } define i32 @can1(i1 %a, i1 %b, i1 %c) { ; CHECK-LABEL: @can1( ; CHECK-NEXT: call void @llvm.assume(i1 [[A:%.*]]) ; CHECK-NEXT: call void @llvm.assume(i1 [[B:%.*]]) ; CHECK-NEXT: call void @llvm.assume(i1 [[C:%.*]]) ; CHECK-NEXT: ret i32 5 ; %and1 = and i1 %a, %b %and = and i1 %and1, %c tail call void @llvm.assume(i1 %and) ret i32 5 } define i32 @can2(i1 %a, i1 %b, i1 %c) { ; CHECK-LABEL: @can2( ; CHECK-NEXT: [[TMP1:%.*]] = xor i1 [[A:%.*]], true ; CHECK-NEXT: call void @llvm.assume(i1 [[TMP1]]) ; CHECK-NEXT: [[TMP2:%.*]] = xor i1 [[B:%.*]], true ; CHECK-NEXT: call void @llvm.assume(i1 [[TMP2]]) ; CHECK-NEXT: ret i32 5 ; %v = or i1 %a, %b %w = xor i1 %v, 1 tail call void @llvm.assume(i1 %w) ret i32 5 } define i32 @bar1(i32 %a) #0 { ; CHECK-LABEL: @bar1( ; CHECK-NEXT: [[AND:%.*]] = and i32 [[A:%.*]], 7 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[AND]], 1 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i32 1 ; %and1 = and i32 %a, 3 %and = and i32 %a, 7 %cmp = icmp eq i32 %and, 1 tail call void @llvm.assume(i1 %cmp) ret i32 %and1 } define i32 @bar2(i32 %a) #0 { ; CHECK-LABEL: @bar2( ; CHECK-NEXT: [[AND:%.*]] = and i32 [[A:%.*]], 7 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[AND]], 1 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i32 1 ; %and = and i32 %a, 7 %cmp = icmp eq i32 %and, 1 tail call void @llvm.assume(i1 %cmp) %and1 = and i32 %a, 3 ret i32 %and1 } define i32 @bar3(i32 %a, i1 %x, i1 %y) #0 { ; CHECK-LABEL: @bar3( ; CHECK-NEXT: entry: ; CHECK-NEXT: tail call void @llvm.assume(i1 [[X:%.*]]) ; CHECK-NEXT: [[AND:%.*]] = and i32 [[A:%.*]], 7 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[AND]], 1 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: tail call void @llvm.assume(i1 [[Y:%.*]]) ; CHECK-NEXT: ret i32 1 ; entry: %and1 = and i32 %a, 3 ; Don't be fooled by other assumes around. tail call void @llvm.assume(i1 %x) %and = and i32 %a, 7 %cmp = icmp eq i32 %and, 1 tail call void @llvm.assume(i1 %cmp) tail call void @llvm.assume(i1 %y) ret i32 %and1 } define i32 @bar4(i32 %a, i32 %b) { ; CHECK-LABEL: @bar4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[AND:%.*]] = and i32 [[A:%.*]], 7 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[AND]], 1 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[A]], [[B:%.*]] ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP2]]) ; CHECK-NEXT: ret i32 1 ; entry: %and1 = and i32 %b, 3 %and = and i32 %a, 7 %cmp = icmp eq i32 %and, 1 tail call void @llvm.assume(i1 %cmp) %cmp2 = icmp eq i32 %a, %b tail call void @llvm.assume(i1 %cmp2) ret i32 %and1 } define i32 @icmp1(i32 %a) #0 { ; CHECK-LABEL: @icmp1( ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[A:%.*]], 5 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i32 1 ; %cmp = icmp sgt i32 %a, 5 tail call void @llvm.assume(i1 %cmp) %conv = zext i1 %cmp to i32 ret i32 %conv } define i32 @icmp2(i32 %a) #0 { ; CHECK-LABEL: @icmp2( ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[A:%.*]], 5 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i32 0 ; %cmp = icmp sgt i32 %a, 5 tail call void @llvm.assume(i1 %cmp) %t0 = zext i1 %cmp to i32 %lnot.ext = xor i32 %t0, 1 ret i32 %lnot.ext } ; If the 'not' of a condition is known true, then the condition must be false. define i1 @assume_not(i1 %cond) { ; CHECK-LABEL: @assume_not( ; CHECK-NEXT: [[NOTCOND:%.*]] = xor i1 [[COND:%.*]], true ; CHECK-NEXT: call void @llvm.assume(i1 [[NOTCOND]]) ; CHECK-NEXT: ret i1 false ; %notcond = xor i1 %cond, true call void @llvm.assume(i1 %notcond) ret i1 %cond } declare void @escape(i32* %a) ; Canonicalize a nonnull assumption on a load into metadata form. define i32 @bundle1(i32* %P) { ; CHECK-LABEL: @bundle1( ; CHECK-NEXT: tail call void @llvm.assume(i1 true) [ "nonnull"(i32* [[P:%.*]]) ] ; CHECK-NEXT: [[LOAD:%.*]] = load i32, i32* [[P]], align 4 ; CHECK-NEXT: ret i32 [[LOAD]] ; tail call void @llvm.assume(i1 true) ["nonnull"(i32* %P)] %load = load i32, i32* %P ret i32 %load } define i32 @bundle2(i32* %P) { ; CHECK-LABEL: @bundle2( ; CHECK-NEXT: [[LOAD:%.*]] = load i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: ret i32 [[LOAD]] ; tail call void @llvm.assume(i1 true) ["ignore"(i32* undef)] %load = load i32, i32* %P ret i32 %load } define i1 @nonnull1(i32** %a) { ; CHECK-LABEL: @nonnull1( ; CHECK-NEXT: [[LOAD:%.*]] = load i32*, i32** [[A:%.*]], align 8, !nonnull !6 ; CHECK-NEXT: tail call void @escape(i32* nonnull [[LOAD]]) ; CHECK-NEXT: ret i1 false ; %load = load i32*, i32** %a %cmp = icmp ne i32* %load, null tail call void @llvm.assume(i1 %cmp) tail call void @escape(i32* %load) %rval = icmp eq i32* %load, null ret i1 %rval } ; Make sure the above canonicalization applies only ; to pointer types. Doing otherwise would be illegal. define i1 @nonnull2(i32* %a) { ; CHECK-LABEL: @nonnull2( ; CHECK-NEXT: [[LOAD:%.*]] = load i32, i32* [[A:%.*]], align 4 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[LOAD]], 0 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i1 false ; %load = load i32, i32* %a %cmp = icmp ne i32 %load, 0 tail call void @llvm.assume(i1 %cmp) %rval = icmp eq i32 %load, 0 ret i1 %rval } ; Make sure the above canonicalization does not trigger ; if the assume is control dependent on something else define i1 @nonnull3(i32** %a, i1 %control) { ; CHECK-LABEL: @nonnull3( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[LOAD:%.*]] = load i32*, i32** [[A:%.*]], align 8 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32* [[LOAD]], null ; CHECK-NEXT: br i1 [[CONTROL:%.*]], label [[TAKEN:%.*]], label [[NOT_TAKEN:%.*]] ; CHECK: taken: ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i1 false ; CHECK: not_taken: ; CHECK-NEXT: [[RVAL_2:%.*]] = icmp sgt i32* [[LOAD]], null ; CHECK-NEXT: ret i1 [[RVAL_2]] ; entry: %load = load i32*, i32** %a %cmp = icmp ne i32* %load, null br i1 %control, label %taken, label %not_taken taken: tail call void @llvm.assume(i1 %cmp) %rval = icmp eq i32* %load, null ret i1 %rval not_taken: %rval.2 = icmp sgt i32* %load, null ret i1 %rval.2 } ; Make sure the above canonicalization does not trigger ; if the path from the load to the assume is potentially ; interrupted by an exception being thrown define i1 @nonnull4(i32** %a) { ; CHECK-LABEL: @nonnull4( ; CHECK-NEXT: [[LOAD:%.*]] = load i32*, i32** [[A:%.*]], align 8 ; CHECK-NEXT: tail call void @escape(i32* [[LOAD]]) ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32* [[LOAD]], null ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i1 false ; %load = load i32*, i32** %a ;; This call may throw! tail call void @escape(i32* %load) %cmp = icmp ne i32* %load, null tail call void @llvm.assume(i1 %cmp) %rval = icmp eq i32* %load, null ret i1 %rval } define i1 @nonnull5(i32** %a) { ; CHECK-LABEL: @nonnull5( ; CHECK-NEXT: [[LOAD:%.*]] = load i32*, i32** [[A:%.*]], align 8 ; CHECK-NEXT: tail call void @escape(i32* [[LOAD]]) ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32* [[LOAD]], null ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i1 false ; %load = load i32*, i32** %a ;; This call may throw! tail call void @escape(i32* %load) %integral = ptrtoint i32* %load to i64 %cmp = icmp slt i64 %integral, 0 tail call void @llvm.assume(i1 %cmp) ; %load has at least highest bit set %rval = icmp eq i32* %load, null ret i1 %rval } ; PR35846 - https://bugs.llvm.org/show_bug.cgi?id=35846 define i32 @assumption_conflicts_with_known_bits(i32 %a, i32 %b) { ; CHECK-LABEL: @assumption_conflicts_with_known_bits( ; CHECK-NEXT: [[AND1:%.*]] = and i32 [[B:%.*]], 3 ; CHECK-NEXT: tail call void @llvm.assume(i1 false) ; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[AND1]], 0 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP2]]) ; CHECK-NEXT: ret i32 0 ; %and1 = and i32 %b, 3 %B1 = lshr i32 %and1, %and1 %B3 = shl nuw nsw i32 %and1, %B1 %cmp = icmp eq i32 %B3, 1 tail call void @llvm.assume(i1 %cmp) %cmp2 = icmp eq i32 %B1, %B3 tail call void @llvm.assume(i1 %cmp2) ret i32 %and1 } ; PR37726 - https://bugs.llvm.org/show_bug.cgi?id=37726 ; There's a loophole in eliminating a redundant assumption when ; we have conflicting assumptions. Verify that debuginfo doesn't ; get in the way of the fold. define void @debug_interference(i8 %x) { ; CHECK-LABEL: @debug_interference( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ne i8 [[X:%.*]], 0 ; CHECK-NEXT: tail call void @llvm.assume(i1 false) ; CHECK-NEXT: tail call void @llvm.dbg.value(metadata i32 5, [[META7:metadata !.*]], metadata !DIExpression()), [[DBG9:!dbg !.*]] ; CHECK-NEXT: tail call void @llvm.assume(i1 false) ; CHECK-NEXT: tail call void @llvm.dbg.value(metadata i32 5, [[META7]], metadata !DIExpression()), [[DBG9]] ; CHECK-NEXT: tail call void @llvm.dbg.value(metadata i32 5, [[META7]], metadata !DIExpression()), [[DBG9]] ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP2]]) ; CHECK-NEXT: ret void ; %cmp1 = icmp eq i8 %x, 0 %cmp2 = icmp ne i8 %x, 0 tail call void @llvm.assume(i1 %cmp1) tail call void @llvm.dbg.value(metadata i32 5, metadata !1, metadata !DIExpression()), !dbg !9 tail call void @llvm.assume(i1 %cmp1) tail call void @llvm.dbg.value(metadata i32 5, metadata !1, metadata !DIExpression()), !dbg !9 tail call void @llvm.assume(i1 %cmp2) tail call void @llvm.dbg.value(metadata i32 5, metadata !1, metadata !DIExpression()), !dbg !9 tail call void @llvm.assume(i1 %cmp2) ret void } ; This would crash. ; Does it ever make sense to peek through a bitcast of the icmp operand? define i32 @PR40940(<4 x i8> %x) { ; CHECK-LABEL: @PR40940( ; CHECK-NEXT: [[SHUF:%.*]] = shufflevector <4 x i8> [[X:%.*]], <4 x i8> undef, <4 x i32> ; CHECK-NEXT: [[T2:%.*]] = bitcast <4 x i8> [[SHUF]] to i32 ; CHECK-NEXT: [[T3:%.*]] = icmp ult i32 [[T2]], 65536 ; CHECK-NEXT: call void @llvm.assume(i1 [[T3]]) ; CHECK-NEXT: ret i32 [[T2]] ; %shuf = shufflevector <4 x i8> %x, <4 x i8> undef, <4 x i32> %t2 = bitcast <4 x i8> %shuf to i32 %t3 = icmp ult i32 %t2, 65536 call void @llvm.assume(i1 %t3) ret i32 %t2 } define i1 @nonnull3A(i32** %a, i1 %control) { ; CHECK-LABEL: @nonnull3A( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[LOAD:%.*]] = load i32*, i32** [[A:%.*]], align 8 ; CHECK-NEXT: br i1 [[CONTROL:%.*]], label [[TAKEN:%.*]], label [[NOT_TAKEN:%.*]] ; CHECK: taken: ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32* [[LOAD]], null ; CHECK-NEXT: call void @llvm.assume(i1 [[CMP]]) ; CHECK-NEXT: ret i1 true ; CHECK: not_taken: ; CHECK-NEXT: [[RVAL_2:%.*]] = icmp sgt i32* [[LOAD]], null ; CHECK-NEXT: ret i1 [[RVAL_2]] ; entry: %load = load i32*, i32** %a %cmp = icmp ne i32* %load, null br i1 %control, label %taken, label %not_taken taken: call void @llvm.assume(i1 %cmp) ret i1 %cmp not_taken: call void @llvm.assume(i1 %cmp) %rval.2 = icmp sgt i32* %load, null ret i1 %rval.2 } define i1 @nonnull3B(i32** %a, i1 %control) { ; CHECK-LABEL: @nonnull3B( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[CONTROL:%.*]], label [[TAKEN:%.*]], label [[NOT_TAKEN:%.*]] ; CHECK: taken: ; CHECK-NEXT: [[LOAD:%.*]] = load i32*, i32** [[A:%.*]], align 8 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32* [[LOAD]], null ; CHECK-NEXT: call void @llvm.assume(i1 [[CMP]]) [ "nonnull"(i32* [[LOAD]]), "nonnull"(i1 [[CMP]]) ] ; CHECK-NEXT: ret i1 true ; CHECK: not_taken: ; CHECK-NEXT: ret i1 [[CONTROL]] ; entry: %load = load i32*, i32** %a %cmp = icmp ne i32* %load, null br i1 %control, label %taken, label %not_taken taken: call void @llvm.assume(i1 %cmp) ["nonnull"(i32* %load), "nonnull"(i1 %cmp)] ret i1 %cmp not_taken: call void @llvm.assume(i1 %cmp) ["nonnull"(i32* %load), "nonnull"(i1 %cmp)] ret i1 %control } declare i1 @tmp1(i1) define i1 @nonnull3C(i32** %a, i1 %control) { ; CHECK-LABEL: @nonnull3C( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[CONTROL:%.*]], label [[TAKEN:%.*]], label [[NOT_TAKEN:%.*]] ; CHECK: taken: ; CHECK-NEXT: [[LOAD:%.*]] = load i32*, i32** [[A:%.*]], align 8 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32* [[LOAD]], null ; CHECK-NEXT: [[CMP2:%.*]] = call i1 @tmp1(i1 [[CMP]]) ; CHECK-NEXT: br label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: ret i1 [[CMP2]] ; CHECK: not_taken: ; CHECK-NEXT: ret i1 [[CONTROL]] ; entry: %load = load i32*, i32** %a %cmp = icmp ne i32* %load, null br i1 %control, label %taken, label %not_taken taken: %cmp2 = call i1 @tmp1(i1 %cmp) br label %exit exit: ; FIXME: this shouldn't be dropped because it is still dominated by the new position of %load call void @llvm.assume(i1 %cmp) ["nonnull"(i32* %load), "nonnull"(i1 %cmp)] ret i1 %cmp2 not_taken: call void @llvm.assume(i1 %cmp) ret i1 %control } define i1 @nonnull3D(i32** %a, i1 %control) { ; CHECK-LABEL: @nonnull3D( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[CONTROL:%.*]], label [[TAKEN:%.*]], label [[NOT_TAKEN:%.*]] ; CHECK: taken: ; CHECK-NEXT: [[LOAD:%.*]] = load i32*, i32** [[A:%.*]], align 8 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32* [[LOAD]], null ; CHECK-NEXT: [[CMP2:%.*]] = call i1 @tmp1(i1 [[CMP]]) ; CHECK-NEXT: br label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: ret i1 [[CMP2]] ; CHECK: not_taken: ; CHECK-NEXT: call void @llvm.assume(i1 true) [ "ignore"(i32* undef), "ignore"(i1 undef), "nonnull"(i1 [[CONTROL]]) ] ; CHECK-NEXT: ret i1 [[CONTROL]] ; entry: %load = load i32*, i32** %a %cmp = icmp ne i32* %load, null br i1 %control, label %taken, label %not_taken taken: %cmp2 = call i1 @tmp1(i1 %cmp) br label %exit exit: ret i1 %cmp2 not_taken: call void @llvm.assume(i1 %cmp) ["nonnull"(i32* %load), "nonnull"(i1 %cmp), "nonnull"(i1 %control)] ret i1 %control } define void @always_true_assumption() { ; CHECK-LABEL: @always_true_assumption( ; CHECK-NEXT: ret void ; call void @llvm.assume(i1 true) ret void } ; The alloca guarantees that the low bits of %a are zero because of alignment. ; The assume says the opposite. Make sure we don't crash. define i64 @PR31809() { ; CHECK-LABEL: @PR31809( ; CHECK-NEXT: [[A:%.*]] = alloca i32, align 4 ; CHECK-NEXT: [[T1:%.*]] = ptrtoint i32* [[A]] to i64 ; CHECK-NEXT: call void @llvm.assume(i1 false) ; CHECK-NEXT: ret i64 [[T1]] ; %a = alloca i32 %t1 = ptrtoint i32* %a to i64 %cond = icmp eq i64 %t1, 3 call void @llvm.assume(i1 %cond) ret i64 %t1 } ; Similar to above: there's no way to know which assumption is truthful, ; so just don't crash. define i8 @conflicting_assumptions(i8 %x){ ; CHECK-LABEL: @conflicting_assumptions( ; CHECK-NEXT: call void @llvm.assume(i1 false) ; CHECK-NEXT: [[COND2:%.*]] = icmp eq i8 [[X:%.*]], 4 ; CHECK-NEXT: call void @llvm.assume(i1 [[COND2]]) ; CHECK-NEXT: ret i8 5 ; %add = add i8 %x, 1 %cond1 = icmp eq i8 %x, 3 call void @llvm.assume(i1 %cond1) %cond2 = icmp eq i8 %x, 4 call void @llvm.assume(i1 %cond2) ret i8 %add } ; Another case of conflicting assumptions. This would crash because we'd ; try to set more known bits than existed in the known bits struct. define void @PR36270(i32 %b) { ; CHECK-LABEL: @PR36270( ; CHECK-NEXT: unreachable ; %B7 = xor i32 -1, 2147483647 %and1 = and i32 %b, 3 %B12 = lshr i32 %B7, %and1 %C1 = icmp ult i32 %and1, %B12 tail call void @llvm.assume(i1 %C1) %cmp2 = icmp eq i32 0, %B12 tail call void @llvm.assume(i1 %cmp2) unreachable } ; PR47416 define i32 @unreachable_assume(i32 %x, i32 %y) { ; CHECK-LABEL: @unreachable_assume( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP0:%.*]] = icmp sgt i32 [[X:%.*]], 1 ; CHECK-NEXT: [[CMP1:%.*]] = icmp eq i32 [[Y:%.*]], 1 ; CHECK-NEXT: [[OR:%.*]] = or i1 [[CMP0]], [[CMP1]] ; CHECK-NEXT: tail call void @llvm.assume(i1 [[OR]]) ; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[X]], 1 ; CHECK-NEXT: br i1 [[CMP2]], label [[IF:%.*]], label [[EXIT:%.*]] ; CHECK: if: ; CHECK-NEXT: [[A:%.*]] = and i32 [[Y]], -2 ; CHECK-NEXT: [[CMP3:%.*]] = icmp ne i32 [[A]], 104 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP3]]) ; CHECK-NEXT: br label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: unreachable ; entry: %cmp0 = icmp sgt i32 %x, 1 %cmp1 = icmp eq i32 %y, 1 %or = or i1 %cmp0, %cmp1 tail call void @llvm.assume(i1 %or) %cmp2 = icmp eq i32 %x, 1 br i1 %cmp2, label %if, label %exit if: %a = and i32 %y, -2 %cmp3 = icmp ne i32 %a, 104 tail call void @llvm.assume(i1 %cmp3) br label %exit exit: %cmp4 = icmp eq i32 %x, 2 tail call void @llvm.assume(i1 %cmp4) unreachable } define i32 @unreachable_assumes_and_store(i32 %x, i32 %y, i32* %p) { ; CHECK-LABEL: @unreachable_assumes_and_store( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CMP0:%.*]] = icmp sgt i32 [[X:%.*]], 1 ; CHECK-NEXT: [[CMP1:%.*]] = icmp eq i32 [[Y:%.*]], 1 ; CHECK-NEXT: [[OR:%.*]] = or i1 [[CMP0]], [[CMP1]] ; CHECK-NEXT: tail call void @llvm.assume(i1 [[OR]]) ; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[X]], 1 ; CHECK-NEXT: br i1 [[CMP2]], label [[IF:%.*]], label [[EXIT:%.*]] ; CHECK: if: ; CHECK-NEXT: [[A:%.*]] = and i32 [[Y]], -2 ; CHECK-NEXT: [[CMP3:%.*]] = icmp ne i32 [[A]], 104 ; CHECK-NEXT: tail call void @llvm.assume(i1 [[CMP3]]) ; CHECK-NEXT: br label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: unreachable ; entry: %cmp0 = icmp sgt i32 %x, 1 %cmp1 = icmp eq i32 %y, 1 %or = or i1 %cmp0, %cmp1 tail call void @llvm.assume(i1 %or) %cmp2 = icmp eq i32 %x, 1 br i1 %cmp2, label %if, label %exit if: %a = and i32 %y, -2 %cmp3 = icmp ne i32 %a, 104 tail call void @llvm.assume(i1 %cmp3) br label %exit exit: %cmp4 = icmp eq i32 %x, 2 tail call void @llvm.assume(i1 %cmp4) %cmp5 = icmp ugt i32 %y, 42 tail call void @llvm.assume(i1 %cmp5) store i32 %x, i32* %p unreachable } declare void @llvm.dbg.value(metadata, metadata, metadata) !llvm.dbg.cu = !{!0} !llvm.module.flags = !{!5, !6, !7, !8} !0 = distinct !DICompileUnit(language: DW_LANG_C, file: !3, producer: "Me", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: null, retainedTypes: null, imports: null) !1 = !DILocalVariable(name: "", arg: 1, scope: !2, file: null, line: 1, type: null) !2 = distinct !DISubprogram(name: "debug", linkageName: "debug", scope: null, file: null, line: 0, type: null, isLocal: false, isDefinition: true, scopeLine: 1, flags: DIFlagPrototyped, isOptimized: true, unit: !0) !3 = !DIFile(filename: "consecutive-fences.ll", directory: "") !5 = !{i32 2, !"Dwarf Version", i32 4} !6 = !{i32 2, !"Debug Info Version", i32 3} !7 = !{i32 1, !"wchar_size", i32 4} !8 = !{i32 7, !"PIC Level", i32 2} !9 = !DILocation(line: 0, column: 0, scope: !2) attributes #0 = { nounwind uwtable } attributes #1 = { nounwind }