; RUN: opt -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -S %s | FileCheck %s @p = external local_unnamed_addr global [257 x i32], align 16 @q = external local_unnamed_addr global [257 x i32], align 16 ; Test case for PR43398. define void @can_sink_after_store(i32 %x, i32* %ptr, i64 %tc) local_unnamed_addr #0 { ; CHECK-LABEL: vector.ph: ; CHECK: %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %x, i32 0 ; CHECK-NEXT: %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer ; CHECK-NEXT: %vector.recur.init = insertelement <4 x i32> undef, i32 %.pre, i32 3 ; CHECK-NEXT: br label %vector.body ; CHECK-LABEL: vector.body: ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK-NEXT: %vector.recur = phi <4 x i32> [ %vector.recur.init, %vector.ph ], [ %wide.load, %vector.body ] ; CHECK-NEXT: %offset.idx = add i64 1, %index ; CHECK-NEXT: %0 = add i64 %offset.idx, 0 ; CHECK-NEXT: %1 = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 %0 ; CHECK-NEXT: %2 = getelementptr inbounds i32, i32* %1, i32 0 ; CHECK-NEXT: %3 = bitcast i32* %2 to <4 x i32>* ; CHECK-NEXT: %wide.load = load <4 x i32>, <4 x i32>* %3, align 4 ; CHECK-NEXT: %4 = shufflevector <4 x i32> %vector.recur, <4 x i32> %wide.load, <4 x i32> ; CHECK-NEXT: %5 = add <4 x i32> %4, %broadcast.splat ; CHECK-NEXT: %6 = add <4 x i32> %5, %wide.load ; CHECK-NEXT: %7 = getelementptr inbounds [257 x i32], [257 x i32]* @q, i64 0, i64 %0 ; CHECK-NEXT: %8 = getelementptr inbounds i32, i32* %7, i32 0 ; CHECK-NEXT: %9 = bitcast i32* %8 to <4 x i32>* ; CHECK-NEXT: store <4 x i32> %6, <4 x i32>* %9, align 4 ; CHECK-NEXT: %index.next = add i64 %index, 4 ; CHECK-NEXT: %10 = icmp eq i64 %index.next, 1996 ; CHECK-NEXT: br i1 %10, label %middle.block, label %vector.body ; entry: br label %preheader preheader: %idx.phi.trans = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 1 %.pre = load i32, i32* %idx.phi.trans, align 4 br label %for for: %pre.phi = phi i32 [ %.pre, %preheader ], [ %pre.next, %for ] %iv = phi i64 [ 1, %preheader ], [ %iv.next, %for ] %add.1 = add i32 %pre.phi, %x %idx.1 = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 %iv %pre.next = load i32, i32* %idx.1, align 4 %add.2 = add i32 %add.1, %pre.next %idx.2 = getelementptr inbounds [257 x i32], [257 x i32]* @q, i64 0, i64 %iv store i32 %add.2, i32* %idx.2, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 2000 br i1 %exitcond, label %exit, label %for exit: ret void } ; We can sink potential trapping instructions, as this will only delay the trap ; and not introduce traps on additional paths. define void @sink_sdiv(i32 %x, i32* %ptr, i64 %tc) local_unnamed_addr #0 { ; CHECK-LABEL: vector.ph: ; CHECK: %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %x, i32 0 ; CHECK-NEXT: %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer ; CHECK-NEXT: %vector.recur.init = insertelement <4 x i32> undef, i32 %.pre, i32 3 ; CHECK-NEXT: br label %vector.body ; CHECK-LABEL: vector.body: ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK-NEXT: %vector.recur = phi <4 x i32> [ %vector.recur.init, %vector.ph ], [ %wide.load, %vector.body ] ; CHECK-NEXT: %offset.idx = add i64 1, %index ; CHECK-NEXT: %0 = add i64 %offset.idx, 0 ; CHECK-NEXT: %1 = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 %0 ; CHECK-NEXT: %2 = getelementptr inbounds i32, i32* %1, i32 0 ; CHECK-NEXT: %3 = bitcast i32* %2 to <4 x i32>* ; CHECK-NEXT: %wide.load = load <4 x i32>, <4 x i32>* %3, align 4 ; CHECK-NEXT: %4 = shufflevector <4 x i32> %vector.recur, <4 x i32> %wide.load, <4 x i32> ; CHECK-NEXT: %5 = sdiv <4 x i32> %4, %broadcast.splat ; CHECK-NEXT: %6 = add <4 x i32> %5, %wide.load ; CHECK-NEXT: %7 = getelementptr inbounds [257 x i32], [257 x i32]* @q, i64 0, i64 %0 ; CHECK-NEXT: %8 = getelementptr inbounds i32, i32* %7, i32 0 ; CHECK-NEXT: %9 = bitcast i32* %8 to <4 x i32>* ; CHECK-NEXT: store <4 x i32> %6, <4 x i32>* %9, align 4 ; CHECK-NEXT: %index.next = add i64 %index, 4 ; CHECK-NEXT: %10 = icmp eq i64 %index.next, 1996 ; CHECK-NEXT: br i1 %10, label %middle.block, label %vector.body ; entry: br label %preheader preheader: %idx.phi.trans = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 1 %.pre = load i32, i32* %idx.phi.trans, align 4 br label %for for: %pre.phi = phi i32 [ %.pre, %preheader ], [ %pre.next, %for ] %iv = phi i64 [ 1, %preheader ], [ %iv.next, %for ] %div.1 = sdiv i32 %pre.phi, %x %idx.1 = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 %iv %pre.next = load i32, i32* %idx.1, align 4 %add.2 = add i32 %div.1, %pre.next %idx.2 = getelementptr inbounds [257 x i32], [257 x i32]* @q, i64 0, i64 %iv store i32 %add.2, i32* %idx.2, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 2000 br i1 %exitcond, label %exit, label %for exit: ret void } ; FIXME: Currently we can only sink a single instruction. For the example below, ; we also have to sink users. define void @cannot_sink_with_additional_user(i32 %x, i32* %ptr, i64 %tc) { ; CHECK-LABEL: define void @cannot_sink_with_additional_user( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label %preheader ; CHECK-LABEL: preheader: ; preds = %entry ; CHECK: br label %for ; CHECK-LABEL: for: ; preds = %for, %preheader ; CHECK: br i1 %exitcond, label %exit, label %for ; CHECK-LABEL: exit: ; CHECK-NEXT: ret void entry: br label %preheader preheader: %idx.phi.trans = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 1 %.pre = load i32, i32* %idx.phi.trans, align 4 br label %for for: %pre.phi = phi i32 [ %.pre, %preheader ], [ %pre.next, %for ] %iv = phi i64 [ 1, %preheader ], [ %iv.next, %for ] %add.1 = add i32 %pre.phi, %x %add.2 = add i32 %add.1, %x %idx.1 = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 %iv %pre.next = load i32, i32* %idx.1, align 4 %add.3 = add i32 %add.1, %pre.next %add.4 = add i32 %add.2, %add.3 %idx.2 = getelementptr inbounds [257 x i32], [257 x i32]* @q, i64 0, i64 %iv store i32 %add.4, i32* %idx.2, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 2000 br i1 %exitcond, label %exit, label %for exit: ret void } ; FIXME: We can sink a store, if we can guarantee that it does not alias any ; loads/stores in between. define void @cannot_sink_store(i32 %x, i32* %ptr, i64 %tc) { ; CHECK-LABEL: define void @cannot_sink_store( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label %preheader ; CHECK-LABEL: preheader: ; preds = %entry ; CHECK: br label %for ; CHECK-LABEL: for: ; preds = %for, %preheader ; CHECK: br i1 %exitcond, label %exit, label %for ; CHECK-LABEL: exit: ; CHECK-NEXT: ret void ; entry: br label %preheader preheader: %idx.phi.trans = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 1 %.pre = load i32, i32* %idx.phi.trans, align 4 br label %for for: %pre.phi = phi i32 [ %.pre, %preheader ], [ %pre.next, %for ] %iv = phi i64 [ 1, %preheader ], [ %iv.next, %for ] %add.1 = add i32 %pre.phi, %x store i32 %add.1, i32* %ptr %idx.1 = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 %iv %pre.next = load i32, i32* %idx.1, align 4 %add.2 = add i32 %add.1, %pre.next %idx.2 = getelementptr inbounds [257 x i32], [257 x i32]* @q, i64 0, i64 %iv store i32 %add.2, i32* %idx.2, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 2000 br i1 %exitcond, label %exit, label %for exit: ret void } ; Some kinds of reductions are not detected by IVDescriptors. If we have a ; cycle, we cannot sink it. define void @cannot_sink_reduction(i32 %x, i32* %ptr, i64 %tc) { ; CHECK-LABEL: define void @cannot_sink_reduction( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label %preheader ; CHECK-LABEL: preheader: ; preds = %entry ; CHECK: br label %for ; CHECK-LABEL: for: ; preds = %for, %preheader ; CHECK: br i1 %exitcond, label %exit, label %for ; CHECK-LABEL: exit: ; preds = %for ; CHECK-NET: ret void ; entry: br label %preheader preheader: %idx.phi.trans = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 1 %.pre = load i32, i32* %idx.phi.trans, align 4 br label %for for: %pre.phi = phi i32 [ %.pre, %preheader ], [ %d, %for ] %iv = phi i64 [ 1, %preheader ], [ %iv.next, %for ] %d = sdiv i32 %pre.phi, %x %idx.1 = getelementptr inbounds [257 x i32], [257 x i32]* @p, i64 0, i64 %iv %pre.next = load i32, i32* %idx.1, align 4 %add.2 = add i32 %x, %pre.next %idx.2 = getelementptr inbounds [257 x i32], [257 x i32]* @q, i64 0, i64 %iv store i32 %add.2, i32* %idx.2, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 2000 br i1 %exitcond, label %exit, label %for exit: ret void } ; TODO: We should be able to sink %tmp38 after %tmp60. define void @instruction_with_2_FOR_operands() { ; CHECK-LABEL: define void @instruction_with_2_FOR_operands( ; CHECK-NEXT: bb: ; CHECK-NEXT: br label %bb13 ; CHECK-LABEL: bb13: ; CHECK: br i1 %tmp12, label %bb13, label %bb74 ; CHECK-LABEL: bb74: ; CHECK-NEXT: ret void ; bb: br label %bb13 bb13: ; preds = %bb13, %bb %tmp37 = phi float [ %tmp60, %bb13 ], [ undef, %bb ] %tmp27 = phi float [ %tmp49, %bb13 ], [ undef, %bb ] %indvars.iv = phi i64 [ %indvars.iv.next, %bb13 ], [ 0, %bb ] %tmp38 = fmul fast float %tmp37, %tmp27 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %tmp49 = load float, float* undef, align 4 %tmp60 = load float, float* undef, align 4 %tmp12 = icmp slt i64 %indvars.iv, undef br i1 %tmp12, label %bb13, label %bb74 bb74: ; preds = %bb13 ret void } ; Users that are phi nodes cannot be sunk. define void @cannot_sink_phi(i32* %ptr) { ; CHECK-LABEL: define void @cannot_sink_phi( ; CHECK-NOT: vector.body entry: br label %loop.header loop.header: ; preds = %if.end128, %for.cond108.preheader %iv = phi i64 [ 1, %entry ], [ %iv.next, %loop.latch ] %for = phi i32 [ 0, %entry ], [ %for.next, %loop.latch ] %c.1 = icmp ult i64 %iv, 500 br i1 %c.1, label %if.truebb, label %if.falsebb if.truebb: ; preds = %for.body114 br label %loop.latch if.falsebb: ; preds = %for.body114 br label %loop.latch loop.latch: ; preds = %if.then122, %for.body114.if.end128_crit_edge %first_time.1 = phi i32 [ 20, %if.truebb ], [ %for, %if.falsebb ] %c.2 = icmp ult i64 %iv, 800 %for.next = select i1 %c.2, i32 30, i32 %first_time.1 %ptr.idx = getelementptr i32, i32* %ptr, i64 %iv store i32 %for.next, i32* %ptr.idx %iv.next = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %iv.next, 1000 br i1 %exitcond.not, label %exit, label %loop.header exit: ret void }