// RUN: mlir-opt %s -convert-scf-to-std \ // RUN: -convert-vector-to-llvm='reassociate-fp-reductions' \ // RUN: -convert-std-to-llvm | \ // RUN: mlir-cpu-runner -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s func @entry() { // Construct test vector, numerically very stable. %f1 = constant 1.0: f64 %f2 = constant 2.0: f64 %f3 = constant 3.0: f64 %v0 = vector.broadcast %f1 : f64 to vector<64xf64> %v1 = vector.insert %f2, %v0[11] : f64 into vector<64xf64> %v2 = vector.insert %f3, %v1[52] : f64 into vector<64xf64> vector.print %v2 : vector<64xf64> // // test vector: // // CHECK: ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ) // Various vector reductions. Not full functional unit tests, but // a simple integration test to see if the code runs end-to-end. %0 = vector.reduction "add", %v2 : vector<64xf64> into f64 vector.print %0 : f64 // CHECK: 67 %1 = vector.reduction "mul", %v2 : vector<64xf64> into f64 vector.print %1 : f64 // CHECK: 6 %2 = vector.reduction "min", %v2 : vector<64xf64> into f64 vector.print %2 : f64 // CHECK: 1 %3 = vector.reduction "max", %v2 : vector<64xf64> into f64 vector.print %3 : f64 // CHECK: 3 return }