; RUN: opt %loadPolly -polly-scops \ ; RUN: -polly-allow-nonaffine -polly-allow-nonaffine-branches \ ; RUN: -polly-allow-nonaffine-loops -analyze < %s | FileCheck %s ; RUN: opt %loadPolly -polly-scops -polly-allow-nonaffine \ ; RUN: -polly-unprofitable-scalar-accs=true \ ; RUN: -polly-process-unprofitable=false \ ; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops \ ; RUN: -analyze < %s | FileCheck %s --check-prefix=PROFIT ; ; Verify that we over approximate the read acces of A[j] in the last statement as j is ; computed in a non-affine loop we do not model. ; ; CHECK: Function: f ; CHECK-NEXT: Region: %bb2---%bb24 ; CHECK-NEXT: Max Loop Depth: 1 ; CHECK-NEXT: Invariant Accesses: { ; CHECK-NEXT: } ; CHECK-NEXT: Context: ; CHECK-NEXT: [N] -> { : -2147483648 <= N <= 2147483647 } ; CHECK-NEXT: Assumed Context: ; CHECK-NEXT: [N] -> { : } ; CHECK-NEXT: Invalid Context: ; CHECK-NEXT: [N] -> { : false } ; CHECK-NEXT: p0: %N ; CHECK-NEXT: Arrays { ; CHECK-NEXT: i32 MemRef_j_0__phi; // Element size 4 ; CHECK-NEXT: i32 MemRef_j_0; // Element size 4 ; CHECK-NEXT: i32 MemRef_A[*]; // Element size 4 ; CHECK-NEXT: i32 MemRef_j_2__phi; // Element size 4 ; CHECK-NEXT: i32 MemRef_j_2; // Element size 4 ; CHECK-NEXT: } ; CHECK-NEXT: Arrays (Bounds as pw_affs) { ; CHECK-NEXT: i32 MemRef_j_0__phi; // Element size 4 ; CHECK-NEXT: i32 MemRef_j_0; // Element size 4 ; CHECK-NEXT: i32 MemRef_A[*]; // Element size 4 ; CHECK-NEXT: i32 MemRef_j_2__phi; // Element size 4 ; CHECK-NEXT: i32 MemRef_j_2; // Element size 4 ; CHECK-NEXT: } ; CHECK-NEXT: Alias Groups (0): ; CHECK-NEXT: n/a ; CHECK-NEXT: Statements { ; CHECK-NEXT: Stmt_bb2 ; CHECK-NEXT: Domain := ; CHECK-NEXT: [N] -> { Stmt_bb2[i0] : 0 <= i0 <= N; Stmt_bb2[0] : N < 0 }; ; CHECK-NEXT: Schedule := ; CHECK-NEXT: [N] -> { Stmt_bb2[i0] -> [i0, 0] : i0 <= N; Stmt_bb2[0] -> [0, 0] : N < 0 }; ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1] ; CHECK-NEXT: [N] -> { Stmt_bb2[i0] -> MemRef_j_0__phi[] }; ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1] ; CHECK-NEXT: [N] -> { Stmt_bb2[i0] -> MemRef_j_0[] }; ; CHECK-NEXT: Stmt_bb4__TO__bb18 ; CHECK-NEXT: Domain := ; CHECK-NEXT: [N] -> { Stmt_bb4__TO__bb18[i0] : 0 <= i0 < N }; ; CHECK-NEXT: Schedule := ; CHECK-NEXT: [N] -> { Stmt_bb4__TO__bb18[i0] -> [i0, 1] }; ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] ; CHECK-NEXT: [N] -> { Stmt_bb4__TO__bb18[i0] -> MemRef_A[i0] }; ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] ; CHECK-NEXT: [N] -> { Stmt_bb4__TO__bb18[i0] -> MemRef_A[i0] }; ; CHECK-NEXT: MayWriteAccess := [Reduction Type: NONE] [Scalar: 0] ; CHECK-NEXT: [N] -> { Stmt_bb4__TO__bb18[i0] -> MemRef_A[i0] }; ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1] ; CHECK-NEXT: [N] -> { Stmt_bb4__TO__bb18[i0] -> MemRef_j_2__phi[] }; ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1] ; CHECK-NEXT: [N] -> { Stmt_bb4__TO__bb18[i0] -> MemRef_j_0[] }; ; CHECK-NEXT: Stmt_bb18 ; CHECK-NEXT: Domain := ; CHECK-NEXT: [N] -> { Stmt_bb18[i0] : 0 <= i0 < N }; ; CHECK-NEXT: Schedule := ; CHECK-NEXT: [N] -> { Stmt_bb18[i0] -> [i0, 2] }; ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1] ; CHECK-NEXT: [N] -> { Stmt_bb18[i0] -> MemRef_j_2[] }; ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1] ; CHECK-NEXT: [N] -> { Stmt_bb18[i0] -> MemRef_j_2__phi[] }; ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] ; CHECK-NEXT: [N] -> { Stmt_bb18[i0] -> MemRef_A[o0] }; ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0] ; CHECK-NEXT: [N] -> { Stmt_bb18[i0] -> MemRef_A[i0] }; ; CHECK-NEXT: Stmt_bb23 ; CHECK-NEXT: Domain := ; CHECK-NEXT: [N] -> { Stmt_bb23[i0] : 0 <= i0 < N }; ; CHECK-NEXT: Schedule := ; CHECK-NEXT: [N] -> { Stmt_bb23[i0] -> [i0, 3] }; ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1] ; CHECK-NEXT: [N] -> { Stmt_bb23[i0] -> MemRef_j_2[] }; ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1] ; CHECK-NEXT: [N] -> { Stmt_bb23[i0] -> MemRef_j_0__phi[] }; ; CHECK-NEXT: } ; ; Due to the scalar accesses we are not able to distribute the outer loop, thus we do not consider the region profitable. ; ; PROFIT-NOT: Statements ; ; void f(int *A, int N, int M) { ; int i = 0, j = 0; ; for (i = 0; i < N; i++) { ; if (A[i]) ; for (j = 0; j < M; j++) ; A[i]++; ; A[i] = A[j]; ; } ; } ; target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" define void @f(i32* %A, i32 %N, i32 %M) { bb: %tmp = icmp sgt i32 %M, 0 %smax = select i1 %tmp, i32 %M, i32 0 %tmp1 = sext i32 %N to i64 br label %bb2 bb2: ; preds = %bb23, %bb %indvars.iv = phi i64 [ %indvars.iv.next, %bb23 ], [ 0, %bb ] %j.0 = phi i32 [ 0, %bb ], [ %j.2, %bb23 ] %tmp3 = icmp slt i64 %indvars.iv, %tmp1 br i1 %tmp3, label %bb4, label %bb24 bb4: ; preds = %bb2 %tmp5 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv %tmp6 = load i32, i32* %tmp5, align 4 %tmp7 = icmp eq i32 %tmp6, 0 br i1 %tmp7, label %bb18, label %bb8 bb8: ; preds = %bb4 br label %bb9 bb9: ; preds = %bb15, %bb8 %j.1 = phi i32 [ 0, %bb8 ], [ %tmp16, %bb15 ] %tmp10 = icmp slt i32 %j.1, %M br i1 %tmp10, label %bb11, label %bb17 bb11: ; preds = %bb9 %tmp12 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv %tmp13 = load i32, i32* %tmp12, align 4 %tmp14 = add nsw i32 %tmp13, 1 store i32 %tmp14, i32* %tmp12, align 4 br label %bb15 bb15: ; preds = %bb11 %tmp16 = add nuw nsw i32 %j.1, 1 br label %bb9 bb17: ; preds = %bb9 br label %bb18 bb18: ; preds = %bb4, %bb17 %j.2 = phi i32 [ %smax, %bb17 ], [ %j.0, %bb4 ] %tmp19 = sext i32 %j.2 to i64 %tmp20 = getelementptr inbounds i32, i32* %A, i64 %tmp19 %tmp21 = load i32, i32* %tmp20, align 4 %tmp22 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv store i32 %tmp21, i32* %tmp22, align 4 br label %bb23 bb23: ; preds = %bb18 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 br label %bb2 bb24: ; preds = %bb2 ret void }