; RUN: opt %loadPolly -polly-scops -polly-delinearize=false -analyze < %s | FileCheck %s ; RUN: opt %loadPolly -polly-scops -polly-delinearize=false -polly-allow-nonaffine -analyze < %s | FileCheck %s --check-prefix=NONAFFINE ; RUN: opt %loadPolly -polly-scops -analyze < %s | FileCheck %s --check-prefix=DELIN ; RUN: opt %loadPolly -polly-scops -polly-allow-nonaffine -analyze < %s | FileCheck %s --check-prefix=DELIN ; RUN: opt %loadPolly -polly-function-scops -polly-delinearize=false -analyze < %s | FileCheck %s ; RUN: opt %loadPolly -polly-function-scops -polly-delinearize=false -polly-allow-nonaffine -analyze < %s | FileCheck %s --check-prefix=NONAFFINE ; RUN: opt %loadPolly -polly-function-scops -analyze < %s | FileCheck %s --check-prefix=DELIN ; RUN: opt %loadPolly -polly-function-scops -polly-allow-nonaffine -analyze < %s | FileCheck %s --check-prefix=DELIN target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" ; void single-and-multi-dimensional-array(long n,float X[n][n]) { ; for (long i1 = 0; i1 < n; i1++) ; X[i1][0] = 1; ; ; for (long i2 = 0; i2 < n; i2++) ; X[n-1][i2] = 1; ; } ; ; In previous versions of Polly, the second access was detected as single ; dimensional access whereas the first one was detected as multi-dimensional. ; This test case checks that we now consistently delinearize the array accesses. ; CHECK-NOT: Stmt_for_i_1 ; NONAFFINE: p0: %n ; NONAFFINE-NEXT: p1: ((-1 + %n) * %n) ; ; NONAFFINE: Statements { ; NONAFFINE-NEXT: Stmt_for_i_1 ; NONAFFINE-NEXT: Domain := ; NONAFFINE-NEXT: [n, p_1] -> { Stmt_for_i_1[i0] : 0 <= i0 < n }; ; NONAFFINE-NEXT: Schedule := ; NONAFFINE-NEXT: [n, p_1] -> { Stmt_for_i_1[i0] -> [0, i0] }; ; NONAFFINE-NEXT: MayWriteAccess := [Reduction Type: NONE] [Scalar: 0] ; NONAFFINE-NEXT: [n, p_1] -> { Stmt_for_i_1[i0] -> MemRef_X[o0] }; ; NONAFFINE-NEXT: Stmt_for_i_2 ; NONAFFINE-NEXT: Domain := ; NONAFFINE-NEXT: [n, p_1] -> { Stmt_for_i_2[i0] : 0 <= i0 < n }; ; NONAFFINE-NEXT: Schedule := ; NONAFFINE-NEXT: [n, p_1] -> { Stmt_for_i_2[i0] -> [1, i0] }; ; NONAFFINE-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0] ; NONAFFINE-NEXT: [n, p_1] -> { Stmt_for_i_2[i0] -> MemRef_X[p_1 + i0] }; ; NONAFFINE-NEXT: } ; DELIN: Statements { ; DELIN-NEXT: Stmt_for_i_1 ; DELIN-NEXT: Domain := ; DELIN-NEXT: [n] -> { Stmt_for_i_1[i0] : 0 <= i0 < n }; ; DELIN-NEXT: Schedule := ; DELIN-NEXT: [n] -> { Stmt_for_i_1[i0] -> [0, i0] }; ; DELIN-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0] ; DELIN-NEXT: [n] -> { Stmt_for_i_1[i0] -> MemRef_X[i0, 0] }; ; DELIN-NEXT: Stmt_for_i_2 ; DELIN-NEXT: Domain := ; DELIN-NEXT: [n] -> { Stmt_for_i_2[i0] : 0 <= i0 < n }; ; DELIN-NEXT: Schedule := ; DELIN-NEXT: [n] -> { Stmt_for_i_2[i0] -> [1, i0] }; ; DELIN-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0] ; DELIN-NEXT: [n] -> { Stmt_for_i_2[i0] -> MemRef_X[-1 + n, i0] }; ; DELIN-NEXT: } define void @single-and-multi-dimensional-array(i64 %n, float* %X) { entry: br label %for.i.1 for.i.1: %indvar.1 = phi i64 [ 0, %entry ], [ %indvar.next.1, %for.i.1 ] %offset.1 = mul i64 %n, %indvar.1 %arrayidx.1 = getelementptr float, float* %X, i64 %offset.1 store float 1.000000e+00, float* %arrayidx.1 %indvar.next.1 = add nsw i64 %indvar.1, 1 %exitcond.1 = icmp ne i64 %indvar.next.1, %n br i1 %exitcond.1, label %for.i.1, label %next next: br label %for.i.2 for.i.2: %indvar.2 = phi i64 [ 0, %next ], [ %indvar.next.2, %for.i.2 ] %offset.2.a = add i64 %n, -1 %offset.2.b = mul i64 %n, %offset.2.a %offset.2.c = add i64 %offset.2.b, %indvar.2 %arrayidx.2 = getelementptr float, float* %X, i64 %offset.2.c store float 1.000000e+00, float* %arrayidx.2 %indvar.next.2 = add nsw i64 %indvar.2, 1 %exitcond.2 = icmp ne i64 %indvar.next.2, %n br i1 %exitcond.2, label %for.i.2, label %exit exit: ret void }