; RUN: opt < %s -separate-const-offset-from-gep -reassociate-geps-verify-no-dead-code -S | FileCheck %s ; Several unit tests for -separate-const-offset-from-gep. The transformation ; heavily relies on TargetTransformInfo, so we put these tests under ; target-specific folders. target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" ; target triple is necessary; otherwise TargetTransformInfo rejects any ; addressing mode. target triple = "nvptx64-unknown-unknown" %struct.S = type { float, double } @struct_array = global [1024 x %struct.S] zeroinitializer, align 16 @float_2d_array = global [32 x [32 x float]] zeroinitializer, align 4 ; We should not extract any struct field indices, because fields in a struct ; may have different types. define double* @struct(i32 %i) { entry: %add = add nsw i32 %i, 5 %idxprom = sext i32 %add to i64 %p = getelementptr inbounds [1024 x %struct.S], [1024 x %struct.S]* @struct_array, i64 0, i64 %idxprom, i32 1 ret double* %p } ; CHECK-LABEL: @struct( ; CHECK: getelementptr [1024 x %struct.S], [1024 x %struct.S]* @struct_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1 ; We should be able to trace into sext(a + b) if a + b is non-negative ; (e.g., used as an index of an inbounds GEP) and one of a and b is ; non-negative. define float* @sext_add(i32 %i, i32 %j) { entry: %0 = add i32 %i, 1 %1 = sext i32 %0 to i64 ; inbound sext(i + 1) = sext(i) + 1 %2 = add i32 %j, -2 ; However, inbound sext(j + -2) != sext(j) + -2, e.g., j = INT_MIN %3 = sext i32 %2 to i64 %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3 ret float* %p } ; CHECK-LABEL: @sext_add( ; CHECK-NOT: = add ; CHECK: add i32 %j, -2 ; CHECK: sext ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} ; CHECK: getelementptr inbounds float, float* %{{[a-zA-Z0-9]+}}, i64 32 ; We should be able to trace into sext/zext if it can be distributed to both ; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b) ; ; This test verifies we can transform ; gep base, a + sext(b +nsw 1), c + zext(d +nuw 1) ; to ; gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1 define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) { %b1 = add nsw i32 %b, 1 %b2 = sext i32 %b1 to i64 %i = add i64 %a, %b2 ; i = a + sext(b +nsw 1) %d1 = add nuw i32 %d, 1 %d2 = zext i32 %d1 to i64 %j = add i64 %c, %d2 ; j = c + zext(d +nuw 1) %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j ret float* %p } ; CHECK-LABEL: @ext_add_no_overflow( ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 33 ; Verifies we handle nested sext/zext correctly. define void @sext_zext(i32 %a, i32 %b, float** %out1, float** %out2) { entry: %0 = add nsw nuw i32 %a, 1 %1 = sext i32 %0 to i48 %2 = zext i48 %1 to i64 ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1 %3 = add nsw i32 %b, 2 %4 = sext i32 %3 to i48 %5 = zext i48 %4 to i64 ; zext(sext(b +nsw 2)) != zext(sext(b)) + 2 %p1 = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %2, i64 %5 store float* %p1, float** %out1 %6 = add nuw i32 %a, 3 %7 = zext i32 %6 to i48 %8 = sext i48 %7 to i64 ; sext(zext(a +nuw 3)) = zext(a +nuw 3) = zext(a) + 3 %9 = add nsw i32 %b, 4 %10 = zext i32 %9 to i48 %11 = sext i48 %10 to i64 ; sext(zext(b +nsw 4)) != zext(b) + 4 %p2 = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %8, i64 %11 store float* %p2, float** %out2 ret void } ; CHECK-LABEL: @sext_zext( ; CHECK: [[BASE_PTR_1:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} ; CHECK: getelementptr float, float* [[BASE_PTR_1]], i64 32 ; CHECK: [[BASE_PTR_2:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} ; CHECK: getelementptr float, float* [[BASE_PTR_2]], i64 96 ; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if ; its operand is an OR and the two operands of the OR have no common bits. define float* @sext_or(i64 %a, i32 %b) { entry: %b1 = shl i32 %b, 2 %b2 = or i32 %b1, 1 ; (b << 2) and 1 have no common bits %b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits %b2.ext = zext i32 %b2 to i64 %b3.ext = sext i32 %b3 to i64 %i = add i64 %a, %b2.ext %j = add i64 %a, %b3.ext %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j ret float* %p } ; CHECK-LABEL: @sext_or( ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}} ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 32 ; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b + ; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't ; affected. define float* @expr(i64 %a, i64 %b, i64* %out) { entry: %b5 = add i64 %b, 5 %i = add i64 %b5, %a %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 0 store i64 %b5, i64* %out ret float* %p } ; CHECK-LABEL: @expr( ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 0 ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 160 ; CHECK: store i64 %b5, i64* %out ; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8 define float* @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) { entry: %0 = add nsw i32 %c, 8 %1 = add nsw i32 %b, %0 %2 = add nsw i32 %a, %1 %3 = sext i32 %2 to i64 %i = add i64 %d, %3 %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i ret float* %p } ; CHECK-LABEL: @sext_expr( ; CHECK: sext i32 ; CHECK: sext i32 ; CHECK: sext i32 ; CHECK: getelementptr inbounds float, float* %{{[a-zA-Z0-9]+}}, i64 8 ; Verifies we handle "sub" correctly. define float* @sub(i64 %i, i64 %j) { %i2 = sub i64 %i, 5 ; i - 5 %j2 = sub i64 5, %j ; 5 - i %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i2, i64 %j2 ret float* %p } ; CHECK-LABEL: @sub( ; CHECK: %[[j2:[a-zA-Z0-9]+]] = sub i64 0, %j ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]] ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 -155 %struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed ; Verifies we can emit correct uglygep if the address is not natually aligned. define i64* @packed_struct(i32 %i, i32 %j) { entry: %s = alloca [1024 x %struct.Packed], align 16 %add = add nsw i32 %j, 3 %idxprom = sext i32 %add to i64 %add1 = add nsw i32 %i, 1 %idxprom2 = sext i32 %add1 to i64 %arrayidx3 = getelementptr inbounds [1024 x %struct.Packed], [1024 x %struct.Packed]* %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom ret i64* %arrayidx3 } ; CHECK-LABEL: @packed_struct( ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [1024 x %struct.Packed], [1024 x %struct.Packed]* %s, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1, i64 %{{[a-zA-Z0-9]+}} ; CHECK: [[CASTED_PTR:%[a-zA-Z0-9]+]] = bitcast i64* [[BASE_PTR]] to i8* ; CHECK: %uglygep = getelementptr inbounds i8, i8* [[CASTED_PTR]], i64 100 ; CHECK: bitcast i8* %uglygep to i64* ; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))", ; because "zext(b + 8) != zext(b) + 8" define float* @zext_expr(i32 %a, i32 %b) { entry: %0 = add i32 %b, 8 %1 = add nuw i32 %a, %0 %i = zext i32 %1 to i64 %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i ret float* %p } ; CHECK-LABEL: zext_expr( ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i ; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep ; should be considered sign-extended to the pointer size. Therefore, ; gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b ; because ; sext(a + b) != sext(a) + sext(b) ; ; This test verifies we do not illegitimately extract the 8 from ; gep base, (i32 a + 8) define float* @i32_add(i32 %a) { entry: %i = add i32 %a, 8 %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i32 %i ret float* %p } ; CHECK-LABEL: @i32_add( ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}} ; CHECK-NOT: getelementptr ; Verifies that we compute the correct constant offset when the index is ; sign-extended and then zero-extended. The old version of our code failed to ; handle this case because it simply computed the constant offset as the ; sign-extended value of the constant part of the GEP index. define float* @apint(i1 %a) { entry: %0 = add nsw nuw i1 %a, 1 %1 = sext i1 %0 to i4 %2 = zext i4 %1 to i64 ; zext (sext i1 1 to i4) to i64 = 15 %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %2 ret float* %p } ; CHECK-LABEL: @apint( ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}} ; CHECK: getelementptr float, float* [[BASE_PTR]], i64 15 ; Do not trace into binary operators other than ADD, SUB, and OR. define float* @and(i64 %a) { entry: %0 = shl i64 %a, 2 %1 = and i64 %0, 1 %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %1 ret float* %p } ; CHECK-LABEL: @and( ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array ; CHECK-NOT: getelementptr ; The code that rebuilds an OR expression used to be buggy, and failed on this ; test. define float* @shl_add_or(i64 %a, float* %ptr) { ; CHECK-LABEL: @shl_add_or( entry: %shl = shl i64 %a, 2 %add = add i64 %shl, 12 %or = or i64 %add, 1 ; CHECK: [[OR:%or[0-9]*]] = add i64 %shl, 1 ; ((a << 2) + 12) and 1 have no common bits. Therefore, ; SeparateConstOffsetFromGEP is able to extract the 12. ; TODO(jingyue): We could reassociate the expression to combine 12 and 1. %p = getelementptr float, float* %ptr, i64 %or ; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr float, float* %ptr, i64 [[OR]] ; CHECK: getelementptr float, float* [[PTR]], i64 12 ret float* %p ; CHECK-NEXT: ret } ; The source code used to be buggy in checking ; (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) ; where AccumulativeByteOffset is signed but ElementTypeSizeOfGEP is unsigned. ; The compiler would promote AccumulativeByteOffset to unsigned, causing ; unexpected results. For example, while -64 % (int64_t)24 != 0, ; -64 % (uint64_t)24 == 0. %struct3 = type { i64, i32 } %struct2 = type { %struct3, i32 } %struct1 = type { i64, %struct2 } %struct0 = type { i32, i32, i64*, [100 x %struct1] } define %struct2* @sign_mod_unsign(%struct0* %ptr, i64 %idx) { ; CHECK-LABEL: @sign_mod_unsign( entry: %arrayidx = add nsw i64 %idx, -2 ; CHECK-NOT: add %ptr2 = getelementptr inbounds %struct0, %struct0* %ptr, i64 0, i32 3, i64 %arrayidx, i32 1 ; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr %struct0, %struct0* %ptr, i64 0, i32 3, i64 %idx, i32 1 ; CHECK: [[PTR1:%[a-zA-Z0-9]+]] = bitcast %struct2* [[PTR]] to i8* ; CHECK: getelementptr inbounds i8, i8* [[PTR1]], i64 -64 ; CHECK: bitcast ret %struct2* %ptr2 ; CHECK-NEXT: ret }