# # Copyright (C) 2014 Connor Abbott # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # Authors: # Connor Abbott (cwabbott0@gmail.com) import re # Class that represents all the information we have about the opcode # NOTE: this must be kept in sync with nir_op_info class Opcode(object): """Class that represents all the information we have about the opcode NOTE: this must be kept in sync with nir_op_info """ def __init__(self, name, output_size, output_type, input_sizes, input_types, is_conversion, algebraic_properties, const_expr): """Parameters: - name is the name of the opcode (prepend nir_op_ for the enum name) - all types are strings that get nir_type_ prepended to them - input_types is a list of types - is_conversion is true if this opcode represents a type conversion - algebraic_properties is a space-seperated string, where nir_op_is_ is prepended before each entry - const_expr is an expression or series of statements that computes the constant value of the opcode given the constant values of its inputs. Constant expressions are formed from the variables src0, src1, ..., src(N-1), where N is the number of arguments. The output of the expression should be stored in the dst variable. Per-component input and output variables will be scalars and non-per-component input and output variables will be a struct with fields named x, y, z, and w all of the correct type. Input and output variables can be assumed to already be of the correct type and need no conversion. In particular, the conversion from the C bool type to/from NIR_TRUE and NIR_FALSE happens automatically. For per-component instructions, the entire expression will be executed once for each component. For non-per-component instructions, the expression is expected to store the correct values in dst.x, dst.y, etc. If "dst" does not exist anywhere in the constant expression, an assignment to dst will happen automatically and the result will be equivalent to "dst = " for per-component instructions and "dst.x = dst.y = ... = " for non-per-component instructions. """ assert isinstance(name, str) assert isinstance(output_size, int) assert isinstance(output_type, str) assert isinstance(input_sizes, list) assert isinstance(input_sizes[0], int) assert isinstance(input_types, list) assert isinstance(input_types[0], str) assert isinstance(is_conversion, bool) assert isinstance(algebraic_properties, str) assert isinstance(const_expr, str) assert len(input_sizes) == len(input_types) assert 0 <= output_size <= 4 or (output_size == 8) or (output_size == 16) for size in input_sizes: assert 0 <= size <= 4 or (size == 8) or (size == 16) if output_size != 0: assert size != 0 self.name = name self.num_inputs = len(input_sizes) self.output_size = output_size self.output_type = output_type self.input_sizes = input_sizes self.input_types = input_types self.is_conversion = is_conversion self.algebraic_properties = algebraic_properties self.const_expr = const_expr # helper variables for strings tfloat = "float" tint = "int" tbool = "bool" tbool1 = "bool1" tbool8 = "bool8" tbool16 = "bool16" tbool32 = "bool32" tuint = "uint" tuint8 = "uint8" tint16 = "int16" tuint16 = "uint16" tfloat16 = "float16" tfloat32 = "float32" tint32 = "int32" tuint32 = "uint32" tint64 = "int64" tuint64 = "uint64" tfloat64 = "float64" _TYPE_SPLIT_RE = re.compile(r'(?Pint|uint|float|bool)(?P\d+)?') def type_has_size(type_): m = _TYPE_SPLIT_RE.match(type_) assert m is not None, 'Invalid NIR type string: "{}"'.format(type_) return m.group('bits') is not None def type_size(type_): m = _TYPE_SPLIT_RE.match(type_) assert m is not None, 'Invalid NIR type string: "{}"'.format(type_) assert m.group('bits') is not None, \ 'NIR type string has no bit size: "{}"'.format(type_) return int(m.group('bits')) def type_sizes(type_): if type_has_size(type_): return [type_size(type_)] elif type_ == 'bool': return [1, 8, 16, 32] elif type_ == 'float': return [16, 32, 64] else: return [1, 8, 16, 32, 64] def type_base_type(type_): m = _TYPE_SPLIT_RE.match(type_) assert m is not None, 'Invalid NIR type string: "{}"'.format(type_) return m.group('type') # Operation where the first two sources are commutative. # # For 2-source operations, this just mathematical commutativity. Some # 3-source operations, like ffma, are only commutative in the first two # sources. _2src_commutative = "2src_commutative " associative = "associative " # global dictionary of opcodes opcodes = {} def opcode(name, output_size, output_type, input_sizes, input_types, is_conversion, algebraic_properties, const_expr): assert name not in opcodes opcodes[name] = Opcode(name, output_size, output_type, input_sizes, input_types, is_conversion, algebraic_properties, const_expr) def unop_convert(name, out_type, in_type, const_expr): opcode(name, 0, out_type, [0], [in_type], False, "", const_expr) def unop(name, ty, const_expr): opcode(name, 0, ty, [0], [ty], False, "", const_expr) def unop_horiz(name, output_size, output_type, input_size, input_type, const_expr): opcode(name, output_size, output_type, [input_size], [input_type], False, "", const_expr) def unop_reduce(name, output_size, output_type, input_type, prereduce_expr, reduce_expr, final_expr): def prereduce(src): return "(" + prereduce_expr.format(src=src) + ")" def final(src): return final_expr.format(src="(" + src + ")") def reduce_(src0, src1): return reduce_expr.format(src0=src0, src1=src1) src0 = prereduce("src0.x") src1 = prereduce("src0.y") src2 = prereduce("src0.z") src3 = prereduce("src0.w") unop_horiz(name + "2", output_size, output_type, 2, input_type, final(reduce_(src0, src1))) unop_horiz(name + "3", output_size, output_type, 3, input_type, final(reduce_(reduce_(src0, src1), src2))) unop_horiz(name + "4", output_size, output_type, 4, input_type, final(reduce_(reduce_(src0, src1), reduce_(src2, src3)))) def unop_numeric_convert(name, out_type, in_type, const_expr): opcode(name, 0, out_type, [0], [in_type], True, "", const_expr) unop("mov", tuint, "src0") unop("ineg", tint, "-src0") unop("fneg", tfloat, "-src0") unop("inot", tint, "~src0") # invert every bit of the integer unop("fsign", tfloat, ("bit_size == 64 ? " + "((src0 == 0.0) ? 0.0 : ((src0 > 0.0) ? 1.0 : -1.0)) : " + "((src0 == 0.0f) ? 0.0f : ((src0 > 0.0f) ? 1.0f : -1.0f))")) unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)") unop("iabs", tint, "(src0 < 0) ? -src0 : src0") unop("fabs", tfloat, "fabs(src0)") unop("fsat", tfloat, ("fmin(fmax(src0, 0.0), 1.0)")) unop("fsat_signed", tfloat, ("fmin(fmax(src0, -1.0), 1.0)")) unop("fclamp_pos", tfloat, ("fmax(src0, 0.0)")) unop("frcp", tfloat, "bit_size == 64 ? 1.0 / src0 : 1.0f / src0") unop("frsq", tfloat, "bit_size == 64 ? 1.0 / sqrt(src0) : 1.0f / sqrtf(src0)") unop("fsqrt", tfloat, "bit_size == 64 ? sqrt(src0) : sqrtf(src0)") unop("fexp2", tfloat, "exp2f(src0)") unop("flog2", tfloat, "log2f(src0)") # Generate all of the numeric conversion opcodes for src_t in [tint, tuint, tfloat, tbool]: if src_t == tbool: dst_types = [tfloat, tint, tbool] elif src_t == tint: dst_types = [tfloat, tint, tbool] elif src_t == tuint: dst_types = [tfloat, tuint] elif src_t == tfloat: dst_types = [tint, tuint, tfloat, tbool] for dst_t in dst_types: for dst_bit_size in type_sizes(dst_t): if dst_bit_size == 16 and dst_t == tfloat and src_t == tfloat: rnd_modes = ['_rtne', '_rtz', ''] for rnd_mode in rnd_modes: if rnd_mode == '_rtne': conv_expr = """ if (bit_size > 16) { dst = _mesa_half_to_float(_mesa_float_to_float16_rtne(src0)); } else { dst = src0; } """ elif rnd_mode == '_rtz': conv_expr = """ if (bit_size > 16) { dst = _mesa_half_to_float(_mesa_float_to_float16_rtz(src0)); } else { dst = src0; } """ else: conv_expr = "src0" unop_numeric_convert("{0}2{1}{2}{3}".format(src_t[0], dst_t[0], dst_bit_size, rnd_mode), dst_t + str(dst_bit_size), src_t, conv_expr) elif dst_bit_size == 32 and dst_t == tfloat and src_t == tfloat: conv_expr = """ if (bit_size > 32 && nir_is_rounding_mode_rtz(execution_mode, 32)) { dst = _mesa_double_to_float_rtz(src0); } else { dst = src0; } """ unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0], dst_bit_size), dst_t + str(dst_bit_size), src_t, conv_expr) else: conv_expr = "src0 != 0" if dst_t == tbool else "src0" unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0], dst_bit_size), dst_t + str(dst_bit_size), src_t, conv_expr) # Special opcode that is the same as f2f16, i2i16, u2u16 except that it is safe # to remove it if the result is immediately converted back to 32 bits again. # This is generated as part of the precision lowering pass. mp stands for medium # precision. unop_numeric_convert("f2fmp", tfloat16, tfloat32, opcodes["f2f16"].const_expr) unop_numeric_convert("i2imp", tint16, tint32, opcodes["i2i16"].const_expr) # u2ump isn't defined, because the behavior is equal to i2imp unop_numeric_convert("f2imp", tint16, tfloat32, opcodes["f2i16"].const_expr) unop_numeric_convert("f2ump", tuint16, tfloat32, opcodes["f2u16"].const_expr) unop_numeric_convert("i2fmp", tfloat16, tint32, opcodes["i2f16"].const_expr) unop_numeric_convert("u2fmp", tfloat16, tuint32, opcodes["u2f16"].const_expr) # Unary floating-point rounding operations. unop("ftrunc", tfloat, "bit_size == 64 ? trunc(src0) : truncf(src0)") unop("fceil", tfloat, "bit_size == 64 ? ceil(src0) : ceilf(src0)") unop("ffloor", tfloat, "bit_size == 64 ? floor(src0) : floorf(src0)") unop("ffract", tfloat, "src0 - (bit_size == 64 ? floor(src0) : floorf(src0))") unop("fround_even", tfloat, "bit_size == 64 ? _mesa_roundeven(src0) : _mesa_roundevenf(src0)") unop("fquantize2f16", tfloat, "(fabs(src0) < ldexpf(1.0, -14)) ? copysignf(0.0f, src0) : _mesa_half_to_float(_mesa_float_to_half(src0))") # Trigonometric operations. unop("fsin", tfloat, "bit_size == 64 ? sin(src0) : sinf(src0)") unop("fcos", tfloat, "bit_size == 64 ? cos(src0) : cosf(src0)") # dfrexp unop_convert("frexp_exp", tint32, tfloat, "frexp(src0, &dst);") unop_convert("frexp_sig", tfloat, tfloat, "int n; dst = frexp(src0, &n);") # Partial derivatives. unop("fddx", tfloat, "0.0") # the derivative of a constant is 0. unop("fddy", tfloat, "0.0") unop("fddx_fine", tfloat, "0.0") unop("fddy_fine", tfloat, "0.0") unop("fddx_coarse", tfloat, "0.0") unop("fddy_coarse", tfloat, "0.0") # Floating point pack and unpack operations. def pack_2x16(fmt): unop_horiz("pack_" + fmt + "_2x16", 1, tuint32, 2, tfloat32, """ dst.x = (uint32_t) pack_fmt_1x16(src0.x); dst.x |= ((uint32_t) pack_fmt_1x16(src0.y)) << 16; """.replace("fmt", fmt)) def pack_4x8(fmt): unop_horiz("pack_" + fmt + "_4x8", 1, tuint32, 4, tfloat32, """ dst.x = (uint32_t) pack_fmt_1x8(src0.x); dst.x |= ((uint32_t) pack_fmt_1x8(src0.y)) << 8; dst.x |= ((uint32_t) pack_fmt_1x8(src0.z)) << 16; dst.x |= ((uint32_t) pack_fmt_1x8(src0.w)) << 24; """.replace("fmt", fmt)) def unpack_2x16(fmt): unop_horiz("unpack_" + fmt + "_2x16", 2, tfloat32, 1, tuint32, """ dst.x = unpack_fmt_1x16((uint16_t)(src0.x & 0xffff)); dst.y = unpack_fmt_1x16((uint16_t)(src0.x << 16)); """.replace("fmt", fmt)) def unpack_4x8(fmt): unop_horiz("unpack_" + fmt + "_4x8", 4, tfloat32, 1, tuint32, """ dst.x = unpack_fmt_1x8((uint8_t)(src0.x & 0xff)); dst.y = unpack_fmt_1x8((uint8_t)((src0.x >> 8) & 0xff)); dst.z = unpack_fmt_1x8((uint8_t)((src0.x >> 16) & 0xff)); dst.w = unpack_fmt_1x8((uint8_t)(src0.x >> 24)); """.replace("fmt", fmt)) pack_2x16("snorm") pack_4x8("snorm") pack_2x16("unorm") pack_4x8("unorm") pack_2x16("half") unpack_2x16("snorm") unpack_4x8("snorm") unpack_2x16("unorm") unpack_4x8("unorm") unpack_2x16("half") unop_horiz("pack_uvec2_to_uint", 1, tuint32, 2, tuint32, """ dst.x = (src0.x & 0xffff) | (src0.y << 16); """) unop_horiz("pack_uvec4_to_uint", 1, tuint32, 4, tuint32, """ dst.x = (src0.x << 0) | (src0.y << 8) | (src0.z << 16) | (src0.w << 24); """) unop_horiz("pack_32_4x8", 1, tuint32, 4, tuint8, "dst.x = src0.x | ((uint32_t)src0.y << 8) | ((uint32_t)src0.z << 16) | ((uint32_t)src0.w << 24);") unop_horiz("pack_32_2x16", 1, tuint32, 2, tuint16, "dst.x = src0.x | ((uint32_t)src0.y << 16);") unop_horiz("pack_64_2x32", 1, tuint64, 2, tuint32, "dst.x = src0.x | ((uint64_t)src0.y << 32);") unop_horiz("pack_64_4x16", 1, tuint64, 4, tuint16, "dst.x = src0.x | ((uint64_t)src0.y << 16) | ((uint64_t)src0.z << 32) | ((uint64_t)src0.w << 48);") unop_horiz("unpack_64_2x32", 2, tuint32, 1, tuint64, "dst.x = src0.x; dst.y = src0.x >> 32;") unop_horiz("unpack_64_4x16", 4, tuint16, 1, tuint64, "dst.x = src0.x; dst.y = src0.x >> 16; dst.z = src0.x >> 32; dst.w = src0.w >> 48;") unop_horiz("unpack_32_2x16", 2, tuint16, 1, tuint32, "dst.x = src0.x; dst.y = src0.x >> 16;") unop_horiz("unpack_32_4x8", 4, tuint8, 1, tuint32, "dst.x = src0.x; dst.y = src0.x >> 8; dst.z = src0.x >> 16; dst.w = src0.x >> 24;") unop_horiz("unpack_half_2x16_flush_to_zero", 2, tfloat32, 1, tuint32, """ dst.x = unpack_half_1x16_flush_to_zero((uint16_t)(src0.x & 0xffff)); dst.y = unpack_half_1x16_flush_to_zero((uint16_t)(src0.x << 16)); """) # Lowered floating point unpacking operations. unop_convert("unpack_half_2x16_split_x", tfloat32, tuint32, "unpack_half_1x16((uint16_t)(src0 & 0xffff))") unop_convert("unpack_half_2x16_split_y", tfloat32, tuint32, "unpack_half_1x16((uint16_t)(src0 >> 16))") unop_convert("unpack_half_2x16_split_x_flush_to_zero", tfloat32, tuint32, "unpack_half_1x16_flush_to_zero((uint16_t)(src0 & 0xffff))") unop_convert("unpack_half_2x16_split_y_flush_to_zero", tfloat32, tuint32, "unpack_half_1x16_flush_to_zero((uint16_t)(src0 >> 16))") unop_convert("unpack_32_2x16_split_x", tuint16, tuint32, "src0") unop_convert("unpack_32_2x16_split_y", tuint16, tuint32, "src0 >> 16") unop_convert("unpack_64_2x32_split_x", tuint32, tuint64, "src0") unop_convert("unpack_64_2x32_split_y", tuint32, tuint64, "src0 >> 32") # Bit operations, part of ARB_gpu_shader5. unop("bitfield_reverse", tuint32, """ /* we're not winning any awards for speed here, but that's ok */ dst = 0; for (unsigned bit = 0; bit < 32; bit++) dst |= ((src0 >> bit) & 1) << (31 - bit); """) unop_convert("bit_count", tuint32, tuint, """ dst = 0; for (unsigned bit = 0; bit < bit_size; bit++) { if ((src0 >> bit) & 1) dst++; } """) unop_convert("ufind_msb", tint32, tuint, """ dst = -1; for (int bit = bit_size - 1; bit >= 0; bit--) { if ((src0 >> bit) & 1) { dst = bit; break; } } """) unop("uclz", tuint32, """ int bit; for (bit = bit_size - 1; bit >= 0; bit--) { if ((src0 & (1u << bit)) != 0) break; } dst = (unsigned)(31 - bit); """) unop("ifind_msb", tint32, """ dst = -1; for (int bit = 31; bit >= 0; bit--) { /* If src0 < 0, we're looking for the first 0 bit. * if src0 >= 0, we're looking for the first 1 bit. */ if ((((src0 >> bit) & 1) && (src0 >= 0)) || (!((src0 >> bit) & 1) && (src0 < 0))) { dst = bit; break; } } """) unop_convert("find_lsb", tint32, tint, """ dst = -1; for (unsigned bit = 0; bit < bit_size; bit++) { if ((src0 >> bit) & 1) { dst = bit; break; } } """) # AMD_gcn_shader extended instructions unop_horiz("cube_face_coord", 2, tfloat32, 3, tfloat32, """ dst.x = dst.y = 0.0; float absX = fabsf(src0.x); float absY = fabsf(src0.y); float absZ = fabsf(src0.z); float ma = 0.0; if (absX >= absY && absX >= absZ) { ma = 2 * src0.x; } if (absY >= absX && absY >= absZ) { ma = 2 * src0.y; } if (absZ >= absX && absZ >= absY) { ma = 2 * src0.z; } if (src0.x >= 0 && absX >= absY && absX >= absZ) { dst.x = -src0.z; dst.y = -src0.y; } if (src0.x < 0 && absX >= absY && absX >= absZ) { dst.x = src0.z; dst.y = -src0.y; } if (src0.y >= 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = src0.z; } if (src0.y < 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = -src0.z; } if (src0.z >= 0 && absZ >= absX && absZ >= absY) { dst.x = src0.x; dst.y = -src0.y; } if (src0.z < 0 && absZ >= absX && absZ >= absY) { dst.x = -src0.x; dst.y = -src0.y; } dst.x = dst.x * (1.0f / ma) + 0.5f; dst.y = dst.y * (1.0f / ma) + 0.5f; """) unop_horiz("cube_face_index", 1, tfloat32, 3, tfloat32, """ float absX = fabsf(src0.x); float absY = fabsf(src0.y); float absZ = fabsf(src0.z); if (src0.x >= 0 && absX >= absY && absX >= absZ) dst.x = 0; if (src0.x < 0 && absX >= absY && absX >= absZ) dst.x = 1; if (src0.y >= 0 && absY >= absX && absY >= absZ) dst.x = 2; if (src0.y < 0 && absY >= absX && absY >= absZ) dst.x = 3; if (src0.z >= 0 && absZ >= absX && absZ >= absY) dst.x = 4; if (src0.z < 0 && absZ >= absX && absZ >= absY) dst.x = 5; """) # Sum of vector components unop_reduce("fsum", 1, tfloat, tfloat, "{src}", "{src0} + {src1}", "{src}") def binop_convert(name, out_type, in_type, alg_props, const_expr): opcode(name, 0, out_type, [0, 0], [in_type, in_type], False, alg_props, const_expr) def binop(name, ty, alg_props, const_expr): binop_convert(name, ty, ty, alg_props, const_expr) def binop_compare(name, ty, alg_props, const_expr): binop_convert(name, tbool1, ty, alg_props, const_expr) def binop_compare8(name, ty, alg_props, const_expr): binop_convert(name, tbool8, ty, alg_props, const_expr) def binop_compare16(name, ty, alg_props, const_expr): binop_convert(name, tbool16, ty, alg_props, const_expr) def binop_compare32(name, ty, alg_props, const_expr): binop_convert(name, tbool32, ty, alg_props, const_expr) def binop_compare_all_sizes(name, ty, alg_props, const_expr): binop_compare(name, ty, alg_props, const_expr) binop_compare8(name + "8", ty, alg_props, const_expr) binop_compare16(name + "16", ty, alg_props, const_expr) binop_compare32(name + "32", ty, alg_props, const_expr) def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size, src2_type, const_expr): opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type], False, "", const_expr) def binop_reduce(name, output_size, output_type, src_type, prereduce_expr, reduce_expr, final_expr, suffix=""): def final(src): return final_expr.format(src= "(" + src + ")") def reduce_(src0, src1): return reduce_expr.format(src0=src0, src1=src1) def prereduce(src0, src1): return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")" srcs = [prereduce("src0." + letter, "src1." + letter) for letter in "xyzwefghijklmnop"] def pairwise_reduce(start, size): if (size == 1): return srcs[start] return reduce_(pairwise_reduce(start + size // 2, size // 2), pairwise_reduce(start, size // 2)) for size in [2, 4, 8, 16]: opcode(name + str(size) + suffix, output_size, output_type, [size, size], [src_type, src_type], False, _2src_commutative, final(pairwise_reduce(0, size))) opcode(name + "3" + suffix, output_size, output_type, [3, 3], [src_type, src_type], False, _2src_commutative, final(reduce_(reduce_(srcs[2], srcs[1]), srcs[0]))) def binop_reduce_all_sizes(name, output_size, src_type, prereduce_expr, reduce_expr, final_expr): binop_reduce(name, output_size, tbool1, src_type, prereduce_expr, reduce_expr, final_expr) binop_reduce("b8" + name[1:], output_size, tbool8, src_type, prereduce_expr, reduce_expr, final_expr) binop_reduce("b16" + name[1:], output_size, tbool16, src_type, prereduce_expr, reduce_expr, final_expr) binop_reduce("b32" + name[1:], output_size, tbool32, src_type, prereduce_expr, reduce_expr, final_expr) binop("fadd", tfloat, _2src_commutative + associative,""" if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) { if (bit_size == 64) dst = _mesa_double_add_rtz(src0, src1); else dst = _mesa_double_to_float_rtz((double)src0 + (double)src1); } else { dst = src0 + src1; } """) binop("iadd", tint, _2src_commutative + associative, "src0 + src1") binop("iadd_sat", tint, _2src_commutative, """ src1 > 0 ? (src0 + src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 + src1) : (src0 < src0 + src1 ? (1ull << (bit_size - 1)) : src0 + src1) """) binop("uadd_sat", tuint, _2src_commutative, "(src0 + src1) < src0 ? MAX_UINT_FOR_SIZE(sizeof(src0) * 8) : (src0 + src1)") binop("isub_sat", tint, "", """ src1 < 0 ? (src0 - src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 - src1) : (src0 < src0 - src1 ? (1ull << (bit_size - 1)) : src0 - src1) """) binop("usub_sat", tuint, "", "src0 < src1 ? 0 : src0 - src1") binop("fsub", tfloat, "", """ if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) { if (bit_size == 64) dst = _mesa_double_sub_rtz(src0, src1); else dst = _mesa_double_to_float_rtz((double)src0 - (double)src1); } else { dst = src0 - src1; } """) binop("isub", tint, "", "src0 - src1") binop_convert("uabs_isub", tuint, tint, "", """ src1 > src0 ? (uint64_t) src1 - (uint64_t) src0 : (uint64_t) src0 - (uint64_t) src1 """) binop("uabs_usub", tuint, "", "(src1 > src0) ? (src1 - src0) : (src0 - src1)") binop("fmul", tfloat, _2src_commutative + associative, """ if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) { if (bit_size == 64) dst = _mesa_double_mul_rtz(src0, src1); else dst = _mesa_double_to_float_rtz((double)src0 * (double)src1); } else { dst = src0 * src1; } """) # low 32-bits of signed/unsigned integer multiply binop("imul", tint, _2src_commutative + associative, """ /* Use 64-bit multiplies to prevent overflow of signed arithmetic */ dst = (uint64_t)src0 * (uint64_t)src1; """) # Generate 64 bit result from 2 32 bits quantity binop_convert("imul_2x32_64", tint64, tint32, _2src_commutative, "(int64_t)src0 * (int64_t)src1") binop_convert("umul_2x32_64", tuint64, tuint32, _2src_commutative, "(uint64_t)src0 * (uint64_t)src1") # high 32-bits of signed integer multiply binop("imul_high", tint, _2src_commutative, """ if (bit_size == 64) { /* We need to do a full 128-bit x 128-bit multiply in order for the sign * extension to work properly. The casts are kind-of annoying but needed * to prevent compiler warnings. */ uint32_t src0_u32[4] = { src0, (int64_t)src0 >> 32, (int64_t)src0 >> 63, (int64_t)src0 >> 63, }; uint32_t src1_u32[4] = { src1, (int64_t)src1 >> 32, (int64_t)src1 >> 63, (int64_t)src1 >> 63, }; uint32_t prod_u32[4]; ubm_mul_u32arr(prod_u32, src0_u32, src1_u32); dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32); } else { /* First, sign-extend to 64-bit, then convert to unsigned to prevent * potential overflow of signed multiply */ dst = ((uint64_t)(int64_t)src0 * (uint64_t)(int64_t)src1) >> bit_size; } """) # high 32-bits of unsigned integer multiply binop("umul_high", tuint, _2src_commutative, """ if (bit_size == 64) { /* The casts are kind-of annoying but needed to prevent compiler warnings. */ uint32_t src0_u32[2] = { src0, (uint64_t)src0 >> 32 }; uint32_t src1_u32[2] = { src1, (uint64_t)src1 >> 32 }; uint32_t prod_u32[4]; ubm_mul_u32arr(prod_u32, src0_u32, src1_u32); dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32); } else { dst = ((uint64_t)src0 * (uint64_t)src1) >> bit_size; } """) # low 32-bits of unsigned integer multiply binop("umul_low", tuint32, _2src_commutative, """ uint64_t mask = (1 << (bit_size / 2)) - 1; dst = ((uint64_t)src0 & mask) * ((uint64_t)src1 & mask); """) # Multiply 32-bits with low 16-bits. binop("imul_32x16", tint32, "", "src0 * (int16_t) src1") binop("umul_32x16", tuint32, "", "src0 * (uint16_t) src1") binop("fdiv", tfloat, "", "src0 / src1") binop("idiv", tint, "", "src1 == 0 ? 0 : (src0 / src1)") binop("udiv", tuint, "", "src1 == 0 ? 0 : (src0 / src1)") # returns a boolean representing the carry resulting from the addition of # the two unsigned arguments. binop_convert("uadd_carry", tuint, tuint, _2src_commutative, "src0 + src1 < src0") # returns a boolean representing the borrow resulting from the subtraction # of the two unsigned arguments. binop_convert("usub_borrow", tuint, tuint, "", "src0 < src1") # hadd: (a + b) >> 1 (without overflow) # x + y = x - (x & ~y) + (x & ~y) + y - (~x & y) + (~x & y) # = (x & y) + (x & ~y) + (x & y) + (~x & y) # = 2 * (x & y) + (x & ~y) + (~x & y) # = ((x & y) << 1) + (x ^ y) # # Since we know that the bottom bit of (x & y) << 1 is zero, # # (x + y) >> 1 = (((x & y) << 1) + (x ^ y)) >> 1 # = (x & y) + ((x ^ y) >> 1) binop("ihadd", tint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)") binop("uhadd", tuint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)") # rhadd: (a + b + 1) >> 1 (without overflow) # x + y + 1 = x + (~x & y) - (~x & y) + y + (x & ~y) - (x & ~y) + 1 # = (x | y) - (~x & y) + (x | y) - (x & ~y) + 1 # = 2 * (x | y) - ((~x & y) + (x & ~y)) + 1 # = ((x | y) << 1) - (x ^ y) + 1 # # Since we know that the bottom bit of (x & y) << 1 is zero, # # (x + y + 1) >> 1 = (x | y) + (-(x ^ y) + 1) >> 1) # = (x | y) - ((x ^ y) >> 1) binop("irhadd", tint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)") binop("urhadd", tuint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)") binop("umod", tuint, "", "src1 == 0 ? 0 : src0 % src1") # For signed integers, there are several different possible definitions of # "modulus" or "remainder". We follow the conventions used by LLVM and # SPIR-V. The irem opcode implements the standard C/C++ signed "%" # operation while the imod opcode implements the more mathematical # "modulus" operation. For details on the difference, see # # http://mathforum.org/library/drmath/view/52343.html binop("irem", tint, "", "src1 == 0 ? 0 : src0 % src1") binop("imod", tint, "", "src1 == 0 ? 0 : ((src0 % src1 == 0 || (src0 >= 0) == (src1 >= 0)) ?" " src0 % src1 : src0 % src1 + src1)") binop("fmod", tfloat, "", "src0 - src1 * floorf(src0 / src1)") binop("frem", tfloat, "", "src0 - src1 * truncf(src0 / src1)") # # Comparisons # # these integer-aware comparisons return a boolean (0 or ~0) binop_compare_all_sizes("flt", tfloat, "", "src0 < src1") binop_compare_all_sizes("fge", tfloat, "", "src0 >= src1") binop_compare_all_sizes("feq", tfloat, _2src_commutative, "src0 == src1") binop_compare_all_sizes("fneu", tfloat, _2src_commutative, "src0 != src1") binop_compare_all_sizes("ilt", tint, "", "src0 < src1") binop_compare_all_sizes("ige", tint, "", "src0 >= src1") binop_compare_all_sizes("ieq", tint, _2src_commutative, "src0 == src1") binop_compare_all_sizes("ine", tint, _2src_commutative, "src0 != src1") binop_compare_all_sizes("ult", tuint, "", "src0 < src1") binop_compare_all_sizes("uge", tuint, "", "src0 >= src1") # integer-aware GLSL-style comparisons that compare floats and ints binop_reduce_all_sizes("ball_fequal", 1, tfloat, "{src0} == {src1}", "{src0} && {src1}", "{src}") binop_reduce_all_sizes("bany_fnequal", 1, tfloat, "{src0} != {src1}", "{src0} || {src1}", "{src}") binop_reduce_all_sizes("ball_iequal", 1, tint, "{src0} == {src1}", "{src0} && {src1}", "{src}") binop_reduce_all_sizes("bany_inequal", 1, tint, "{src0} != {src1}", "{src0} || {src1}", "{src}") # non-integer-aware GLSL-style comparisons that return 0.0 or 1.0 binop_reduce("fall_equal", 1, tfloat32, tfloat32, "{src0} == {src1}", "{src0} && {src1}", "{src} ? 1.0f : 0.0f") binop_reduce("fany_nequal", 1, tfloat32, tfloat32, "{src0} != {src1}", "{src0} || {src1}", "{src} ? 1.0f : 0.0f") # These comparisons for integer-less hardware return 1.0 and 0.0 for true # and false respectively binop("slt", tfloat32, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal binop("seq", tfloat32, _2src_commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal binop("sne", tfloat32, _2src_commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal # SPIRV shifts are undefined for shift-operands >= bitsize, # but SM5 shifts are defined to use the least significant bits, only # The NIR definition is according to the SM5 specification. opcode("ishl", 0, tint, [0, 0], [tint, tuint32], False, "", "(uint64_t)src0 << (src1 & (sizeof(src0) * 8 - 1))") opcode("ishr", 0, tint, [0, 0], [tint, tuint32], False, "", "src0 >> (src1 & (sizeof(src0) * 8 - 1))") opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], False, "", "src0 >> (src1 & (sizeof(src0) * 8 - 1))") opcode("urol", 0, tuint, [0, 0], [tuint, tuint32], False, "", """ uint32_t rotate_mask = sizeof(src0) * 8 - 1; dst = (src0 << (src1 & rotate_mask)) | (src0 >> (-src1 & rotate_mask)); """) opcode("uror", 0, tuint, [0, 0], [tuint, tuint32], False, "", """ uint32_t rotate_mask = sizeof(src0) * 8 - 1; dst = (src0 >> (src1 & rotate_mask)) | (src0 << (-src1 & rotate_mask)); """) # bitwise logic operators # # These are also used as boolean and, or, xor for hardware supporting # integers. binop("iand", tuint, _2src_commutative + associative, "src0 & src1") binop("ior", tuint, _2src_commutative + associative, "src0 | src1") binop("ixor", tuint, _2src_commutative + associative, "src0 ^ src1") binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}", "{src}") binop_reduce("fdot", 4, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}", "{src}", suffix="_replicated") opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], False, "", "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w") opcode("fdph_replicated", 4, tfloat, [3, 4], [tfloat, tfloat], False, "", "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w") binop("fmin", tfloat, _2src_commutative + associative, "fmin(src0, src1)") binop("imin", tint, _2src_commutative + associative, "src1 > src0 ? src0 : src1") binop("umin", tuint, _2src_commutative + associative, "src1 > src0 ? src0 : src1") binop("fmax", tfloat, _2src_commutative + associative, "fmax(src0, src1)") binop("imax", tint, _2src_commutative + associative, "src1 > src0 ? src1 : src0") binop("umax", tuint, _2src_commutative + associative, "src1 > src0 ? src1 : src0") # Saturated vector add for 4 8bit ints. binop("usadd_4x8", tint32, _2src_commutative + associative, """ dst = 0; for (int i = 0; i < 32; i += 8) { dst |= MIN2(((src0 >> i) & 0xff) + ((src1 >> i) & 0xff), 0xff) << i; } """) # Saturated vector subtract for 4 8bit ints. binop("ussub_4x8", tint32, "", """ dst = 0; for (int i = 0; i < 32; i += 8) { int src0_chan = (src0 >> i) & 0xff; int src1_chan = (src1 >> i) & 0xff; if (src0_chan > src1_chan) dst |= (src0_chan - src1_chan) << i; } """) # vector min for 4 8bit ints. binop("umin_4x8", tint32, _2src_commutative + associative, """ dst = 0; for (int i = 0; i < 32; i += 8) { dst |= MIN2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i; } """) # vector max for 4 8bit ints. binop("umax_4x8", tint32, _2src_commutative + associative, """ dst = 0; for (int i = 0; i < 32; i += 8) { dst |= MAX2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i; } """) # unorm multiply: (a * b) / 255. binop("umul_unorm_4x8", tint32, _2src_commutative + associative, """ dst = 0; for (int i = 0; i < 32; i += 8) { int src0_chan = (src0 >> i) & 0xff; int src1_chan = (src1 >> i) & 0xff; dst |= ((src0_chan * src1_chan) / 255) << i; } """) binop("fpow", tfloat, "", "bit_size == 64 ? powf(src0, src1) : pow(src0, src1)") binop_horiz("pack_half_2x16_split", 1, tuint32, 1, tfloat32, 1, tfloat32, "pack_half_1x16(src0.x) | (pack_half_1x16(src1.x) << 16)") binop_convert("pack_64_2x32_split", tuint64, tuint32, "", "src0 | ((uint64_t)src1 << 32)") binop_convert("pack_32_2x16_split", tuint32, tuint16, "", "src0 | ((uint32_t)src1 << 16)") # bfm implements the behavior of the first operation of the SM5 "bfi" assembly # and that of the "bfi1" i965 instruction. That is, the bits and offset values # are from the low five bits of src0 and src1, respectively. binop_convert("bfm", tuint32, tint32, "", """ int bits = src0 & 0x1F; int offset = src1 & 0x1F; dst = ((1u << bits) - 1) << offset; """) opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], False, "", """ dst = (bit_size == 64) ? ldexp(src0, src1) : ldexpf(src0, src1); /* flush denormals to zero. */ if (!isnormal(dst)) dst = copysignf(0.0f, src0); """) # Combines the first component of each input to make a 2-component vector. binop_horiz("vec2", 2, tuint, 1, tuint, 1, tuint, """ dst.x = src0.x; dst.y = src1.x; """) # Byte extraction binop("extract_u8", tuint, "", "(uint8_t)(src0 >> (src1 * 8))") binop("extract_i8", tint, "", "(int8_t)(src0 >> (src1 * 8))") # Word extraction binop("extract_u16", tuint, "", "(uint16_t)(src0 >> (src1 * 16))") binop("extract_i16", tint, "", "(int16_t)(src0 >> (src1 * 16))") def triop(name, ty, alg_props, const_expr): opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], False, alg_props, const_expr) def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr): opcode(name, output_size, tuint, [src1_size, src2_size, src3_size], [tuint, tuint, tuint], False, "", const_expr) triop("ffma", tfloat, _2src_commutative, """ if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) { if (bit_size == 64) dst = _mesa_double_fma_rtz(src0, src1, src2); else if (bit_size == 32) dst = _mesa_float_fma_rtz(src0, src1, src2); else dst = _mesa_double_to_float_rtz(_mesa_double_fma_rtz(src0, src1, src2)); } else { if (bit_size == 32) dst = fmaf(src0, src1, src2); else dst = fma(src0, src1, src2); } """) triop("flrp", tfloat, "", "src0 * (1 - src2) + src1 * src2") # Conditional Select # # A vector conditional select instruction (like ?:, but operating per- # component on vectors). There are two versions, one for floating point # bools (0.0 vs 1.0) and one for integer bools (0 vs ~0). triop("fcsel", tfloat32, "", "(src0 != 0.0f) ? src1 : src2") opcode("bcsel", 0, tuint, [0, 0, 0], [tbool1, tuint, tuint], False, "", "src0 ? src1 : src2") opcode("b8csel", 0, tuint, [0, 0, 0], [tbool8, tuint, tuint], False, "", "src0 ? src1 : src2") opcode("b16csel", 0, tuint, [0, 0, 0], [tbool16, tuint, tuint], False, "", "src0 ? src1 : src2") opcode("b32csel", 0, tuint, [0, 0, 0], [tbool32, tuint, tuint], False, "", "src0 ? src1 : src2") # SM5 bfi assembly triop("bfi", tuint32, "", """ unsigned mask = src0, insert = src1, base = src2; if (mask == 0) { dst = base; } else { unsigned tmp = mask; while (!(tmp & 1)) { tmp >>= 1; insert <<= 1; } dst = (base & ~mask) | (insert & mask); } """) triop("bitfield_select", tuint, "", "(src0 & src1) | (~src0 & src2)") # SM5 ubfe/ibfe assembly: only the 5 least significant bits of offset and bits are used. opcode("ubfe", 0, tuint32, [0, 0, 0], [tuint32, tuint32, tuint32], False, "", """ unsigned base = src0; unsigned offset = src1 & 0x1F; unsigned bits = src2 & 0x1F; if (bits == 0) { dst = 0; } else if (offset + bits < 32) { dst = (base << (32 - bits - offset)) >> (32 - bits); } else { dst = base >> offset; } """) opcode("ibfe", 0, tint32, [0, 0, 0], [tint32, tuint32, tuint32], False, "", """ int base = src0; unsigned offset = src1 & 0x1F; unsigned bits = src2 & 0x1F; if (bits == 0) { dst = 0; } else if (offset + bits < 32) { dst = (base << (32 - bits - offset)) >> (32 - bits); } else { dst = base >> offset; } """) # GLSL bitfieldExtract() opcode("ubitfield_extract", 0, tuint32, [0, 0, 0], [tuint32, tint32, tint32], False, "", """ unsigned base = src0; int offset = src1, bits = src2; if (bits == 0) { dst = 0; } else if (bits < 0 || offset < 0 || offset + bits > 32) { dst = 0; /* undefined per the spec */ } else { dst = (base >> offset) & ((1ull << bits) - 1); } """) opcode("ibitfield_extract", 0, tint32, [0, 0, 0], [tint32, tint32, tint32], False, "", """ int base = src0; int offset = src1, bits = src2; if (bits == 0) { dst = 0; } else if (offset < 0 || bits < 0 || offset + bits > 32) { dst = 0; } else { dst = (base << (32 - offset - bits)) >> offset; /* use sign-extending shift */ } """) # Combines the first component of each input to make a 3-component vector. triop_horiz("vec3", 3, 1, 1, 1, """ dst.x = src0.x; dst.y = src1.x; dst.z = src2.x; """) def quadop_horiz(name, output_size, src1_size, src2_size, src3_size, src4_size, const_expr): opcode(name, output_size, tuint, [src1_size, src2_size, src3_size, src4_size], [tuint, tuint, tuint, tuint], False, "", const_expr) opcode("bitfield_insert", 0, tuint32, [0, 0, 0, 0], [tuint32, tuint32, tint32, tint32], False, "", """ unsigned base = src0, insert = src1; int offset = src2, bits = src3; if (bits == 0) { dst = base; } else if (offset < 0 || bits < 0 || bits + offset > 32) { dst = 0; } else { unsigned mask = ((1ull << bits) - 1) << offset; dst = (base & ~mask) | ((insert << offset) & mask); } """) quadop_horiz("vec4", 4, 1, 1, 1, 1, """ dst.x = src0.x; dst.y = src1.x; dst.z = src2.x; dst.w = src3.x; """) opcode("vec8", 8, tuint, [1] * 8, [tuint] * 8, False, "", """ dst.x = src0.x; dst.y = src1.x; dst.z = src2.x; dst.w = src3.x; dst.e = src4.x; dst.f = src5.x; dst.g = src6.x; dst.h = src7.x; """) opcode("vec16", 16, tuint, [1] * 16, [tuint] * 16, False, "", """ dst.x = src0.x; dst.y = src1.x; dst.z = src2.x; dst.w = src3.x; dst.e = src4.x; dst.f = src5.x; dst.g = src6.x; dst.h = src7.x; dst.i = src8.x; dst.j = src9.x; dst.k = src10.x; dst.l = src11.x; dst.m = src12.x; dst.n = src13.x; dst.o = src14.x; dst.p = src15.x; """) # An integer multiply instruction for address calculation. This is # similar to imul, except that the results are undefined in case of # overflow. Overflow is defined according to the size of the variable # being dereferenced. # # This relaxed definition, compared to imul, allows an optimization # pass to propagate bounds (ie, from an load/store intrinsic) to the # sources, such that lower precision integer multiplies can be used. # This is useful on hw that has 24b or perhaps 16b integer multiply # instructions. binop("amul", tint, _2src_commutative + associative, "src0 * src1") # ir3-specific instruction that maps directly to mul-add shift high mix, # (IMADSH_MIX16 i.e. ah * bl << 16 + c). It is used for lowering integer # multiplication (imul) on Freedreno backend.. opcode("imadsh_mix16", 0, tint32, [0, 0, 0], [tint32, tint32, tint32], False, "", """ dst = ((((src0 & 0xffff0000) >> 16) * (src1 & 0x0000ffff)) << 16) + src2; """) # ir3-specific instruction that maps directly to ir3 mad.s24. # # 24b multiply into 32b result (with sign extension) plus 32b int triop("imad24_ir3", tint32, _2src_commutative, "(((int32_t)src0 << 8) >> 8) * (((int32_t)src1 << 8) >> 8) + src2") # 24b multiply into 32b result (with sign extension) binop("imul24", tint32, _2src_commutative + associative, "(((int32_t)src0 << 8) >> 8) * (((int32_t)src1 << 8) >> 8)") # unsigned 24b multiply into 32b result plus 32b int triop("umad24", tuint32, _2src_commutative, "(((uint32_t)src0 << 8) >> 8) * (((uint32_t)src1 << 8) >> 8) + src2") # unsigned 24b multiply into 32b result uint binop("umul24", tint32, _2src_commutative + associative, "(((uint32_t)src0 << 8) >> 8) * (((uint32_t)src1 << 8) >> 8)") unop_convert("fisnormal", tbool1, tfloat, "isnormal(src0)") unop_convert("fisfinite", tbool1, tfloat, "isfinite(src0)")