# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for squeeze.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_squeeze_tests(options): """Make a set of tests to do squeeze.""" test_parameters = [{ "dtype": [tf.int32, tf.float32, tf.int64], "input_shape": [[1, 2, 1, 3, 1, 4, 1, 1]], "axis": [ None, [], [0, 2], [4, 7], [-1, 0, 2, 0, 7, -6], [1], [2, 3, 2], [-1, -2, -4, -6, -8], [0, 2, 4, 6, 7], [7, 6, 4, 2, 0], [6, 6], [0, 1, 2, 3, 4, 5, 6, 7], [-2, -3, 1, 0, 7, -5] ], "fully_quantize": [False], }, { "dtype": [tf.int32, tf.float32, tf.int64], "input_shape": [[1]], "axis": [None, [], [0], [-1]], "fully_quantize": [False], }, { "dtype": [tf.int32, tf.float32, tf.int64], "input_shape": [[1, 1, 1, 1, 1]], "axis": [None, [], [0], [3, 0], [-2, 0, 3, 2]], "fully_quantize": [False], }, { "dtype": [tf.float32], "input_shape": [[1, 2, 1, 3, 1, 4, 1, 1]], "axis": [ None, [], [0, 2], [4, 7], [-1, 0, 2, 0, 7, -6], [1], [2, 3, 2], [-1, -2, -4, -6, -8], [0, 2, 4, 6, 7], [7, 6, 4, 2, 0], [6, 6], [0, 1, 2, 3, 4, 5, 6, 7], [-2, -3, 1, 0, 7, -5] ], "fully_quantize": [True], }, { "dtype": [tf.float32], "input_shape": [[1, 1, 1, 1, 1]], "axis": [[0], [3, 0], [-2, 0, 3, 2]], "fully_quantize": [True], }, { "dtype": [tf.float32], "input_shape": [[1, 1, 5, 10], [1, 5, 1, 10], [5, 1, 10]], "axis": [[0], [1], [3, 0], [-2, 0, 3, 2]], "fully_quantize": [True], }, { "dtype": [tf.string], "input_shape": [[1, 1, 5, 10], [1, 5, 1, 10]], "axis": [[0], []], "fully_quantize": [False], }] def build_graph(parameters): input_tensor = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="input", shape=parameters["input_shape"]) out = tf.squeeze(input_tensor, axis=parameters["axis"]) return [input_tensor], [out] def build_inputs(parameters, sess, inputs, outputs): input_values = create_tensor_data( parameters["dtype"], parameters["input_shape"], min_value=-1, max_value=1) return [input_values], sess.run( outputs, feed_dict=dict(zip(inputs, [input_values]))) make_zip_of_tests( options, test_parameters, build_graph, build_inputs, expected_tf_failures=24)