# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmarks for `tf.data.Dataset.unbatch()`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.benchmarks import benchmark_base from tensorflow.python.data.ops import dataset_ops class UnbatchBenchmark(benchmark_base.DatasetBenchmarkBase): """Benchmarks for `tf.data.Dataset.unbatch()`.""" def benchmark_native_unbatch(self): batch_sizes = [1, 2, 5, 10, 20, 50] num_elements = 10000 for batch_size in batch_sizes: dataset = dataset_ops.Dataset.from_tensors("element").repeat(None) dataset = dataset.batch(batch_size) dataset = dataset.unbatch() self.run_and_report_benchmark( dataset=dataset, num_elements=num_elements, iters=5, name="native_batch_size_%d" % batch_size) # Include a benchmark of the previous `unbatch()` implementation that uses # a composition of more primitive ops. Eventually we'd hope to generate code # that is as good in both cases. def benchmark_old_unbatch_implementation(self): batch_sizes = [1, 2, 5, 10, 20, 50] num_elements = 10000 for batch_size in batch_sizes: dataset = dataset_ops.Dataset.from_tensors("element").repeat(None) dataset = dataset.batch(batch_size) dataset = dataset.flat_map(dataset_ops.Dataset.from_tensor_slices) self.run_and_report_benchmark( dataset=dataset, num_elements=num_elements, iters=5, name="unfused_batch_size_%d" % batch_size) if __name__ == "__main__": benchmark_base.test.main()