/* * Copyright 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #import "RTCShader.h" #if TARGET_OS_IPHONE #import #else #import #endif #include #include #include #import "RTCOpenGLDefines.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" // Vertex shader doesn't do anything except pass coordinates through. const char kRTCVertexShaderSource[] = SHADER_VERSION VERTEX_SHADER_IN " vec2 position;\n" VERTEX_SHADER_IN " vec2 texcoord;\n" VERTEX_SHADER_OUT " vec2 v_texcoord;\n" "void main() {\n" " gl_Position = vec4(position.x, position.y, 0.0, 1.0);\n" " v_texcoord = texcoord;\n" "}\n"; // Compiles a shader of the given |type| with GLSL source |source| and returns // the shader handle or 0 on error. GLuint RTCCreateShader(GLenum type, const GLchar *source) { GLuint shader = glCreateShader(type); if (!shader) { return 0; } glShaderSource(shader, 1, &source, NULL); glCompileShader(shader); GLint compileStatus = GL_FALSE; glGetShaderiv(shader, GL_COMPILE_STATUS, &compileStatus); if (compileStatus == GL_FALSE) { GLint logLength = 0; // The null termination character is included in the returned log length. glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &logLength); if (logLength > 0) { std::unique_ptr compileLog(new char[logLength]); // The returned string is null terminated. glGetShaderInfoLog(shader, logLength, NULL, compileLog.get()); RTC_LOG(LS_ERROR) << "Shader compile error: " << compileLog.get(); } glDeleteShader(shader); shader = 0; } return shader; } // Links a shader program with the given vertex and fragment shaders and // returns the program handle or 0 on error. GLuint RTCCreateProgram(GLuint vertexShader, GLuint fragmentShader) { if (vertexShader == 0 || fragmentShader == 0) { return 0; } GLuint program = glCreateProgram(); if (!program) { return 0; } glAttachShader(program, vertexShader); glAttachShader(program, fragmentShader); glLinkProgram(program); GLint linkStatus = GL_FALSE; glGetProgramiv(program, GL_LINK_STATUS, &linkStatus); if (linkStatus == GL_FALSE) { glDeleteProgram(program); program = 0; } return program; } // Creates and links a shader program with the given fragment shader source and // a plain vertex shader. Returns the program handle or 0 on error. GLuint RTCCreateProgramFromFragmentSource(const char fragmentShaderSource[]) { GLuint vertexShader = RTCCreateShader(GL_VERTEX_SHADER, kRTCVertexShaderSource); RTC_CHECK(vertexShader) << "failed to create vertex shader"; GLuint fragmentShader = RTCCreateShader(GL_FRAGMENT_SHADER, fragmentShaderSource); RTC_CHECK(fragmentShader) << "failed to create fragment shader"; GLuint program = RTCCreateProgram(vertexShader, fragmentShader); // Shaders are created only to generate program. if (vertexShader) { glDeleteShader(vertexShader); } if (fragmentShader) { glDeleteShader(fragmentShader); } // Set vertex shader variables 'position' and 'texcoord' in program. GLint position = glGetAttribLocation(program, "position"); GLint texcoord = glGetAttribLocation(program, "texcoord"); if (position < 0 || texcoord < 0) { glDeleteProgram(program); return 0; } // Read position attribute with size of 2 and stride of 4 beginning at the start of the array. The // last argument indicates offset of data within the vertex buffer. glVertexAttribPointer(position, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(GLfloat), (void *)0); glEnableVertexAttribArray(position); // Read texcoord attribute with size of 2 and stride of 4 beginning at the first texcoord in the // array. The last argument indicates offset of data within the vertex buffer. glVertexAttribPointer( texcoord, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(GLfloat), (void *)(2 * sizeof(GLfloat))); glEnableVertexAttribArray(texcoord); return program; } BOOL RTCCreateVertexBuffer(GLuint *vertexBuffer, GLuint *vertexArray) { #if !TARGET_OS_IPHONE glGenVertexArrays(1, vertexArray); if (*vertexArray == 0) { return NO; } glBindVertexArray(*vertexArray); #endif glGenBuffers(1, vertexBuffer); if (*vertexBuffer == 0) { glDeleteVertexArrays(1, vertexArray); return NO; } glBindBuffer(GL_ARRAY_BUFFER, *vertexBuffer); glBufferData(GL_ARRAY_BUFFER, 4 * 4 * sizeof(GLfloat), NULL, GL_DYNAMIC_DRAW); return YES; } // Set vertex data to the currently bound vertex buffer. void RTCSetVertexData(RTCVideoRotation rotation) { // When modelview and projection matrices are identity (default) the world is // contained in the square around origin with unit size 2. Drawing to these // coordinates is equivalent to drawing to the entire screen. The texture is // stretched over that square using texture coordinates (u, v) that range // from (0, 0) to (1, 1) inclusive. Texture coordinates are flipped vertically // here because the incoming frame has origin in upper left hand corner but // OpenGL expects origin in bottom left corner. std::array, 4> UVCoords = {{ {{0, 1}}, // Lower left. {{1, 1}}, // Lower right. {{1, 0}}, // Upper right. {{0, 0}}, // Upper left. }}; // Rotate the UV coordinates. int rotation_offset; switch (rotation) { case RTCVideoRotation_0: rotation_offset = 0; break; case RTCVideoRotation_90: rotation_offset = 1; break; case RTCVideoRotation_180: rotation_offset = 2; break; case RTCVideoRotation_270: rotation_offset = 3; break; } std::rotate(UVCoords.begin(), UVCoords.begin() + rotation_offset, UVCoords.end()); const GLfloat gVertices[] = { // X, Y, U, V. -1, -1, UVCoords[0][0], UVCoords[0][1], 1, -1, UVCoords[1][0], UVCoords[1][1], 1, 1, UVCoords[2][0], UVCoords[2][1], -1, 1, UVCoords[3][0], UVCoords[3][1], }; glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(gVertices), gVertices); }