# # Copyright (C) 2017 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # conv_quant8.mod.py with biases and filter being constants model = Model() i1 = Input("op1", "TENSOR_QUANT8_ASYMM", "{1, 3, 3, 1}, 0.5f, 0") f1 = Parameter("op2", "TENSOR_QUANT8_ASYMM", "{1, 2, 2, 1}, 0.5f, 0", [2, 2, 2, 2]) b1 = Parameter("op3", "TENSOR_INT32", "{1}, 0.25f, 0", [4]) pad0 = Int32Scalar("pad0", 0) act = Int32Scalar("act", 0) stride = Int32Scalar("stride", 1) # output dimension: # (i1.height - f1.height + 1) x (i1.width - f1.width + 1) output = Output("op4", "TENSOR_QUANT8_ASYMM", "{1, 2, 2, 1}, 1.f, 0") model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output) # Example 1. Input in operand 0, input0 = { i1: # input 0 [8, 8, 8, 8, 4, 8, 8, 8, 8] } # (i1 (conv) f1) + b1 output0 = { output: # output 0 [15, 15, 15, 15] } # Instantiate an example Example((input0, output0))