# # Copyright (C) 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def test(name, input0, input1, output0, input0_data, input1_data, output_data): model = Model().Operation("MINIMUM", input0, input1).To(output0) quant8 = DataTypeConverter().Identify({ input0: ["TENSOR_QUANT8_ASYMM", 0.5, 127], input1: ["TENSOR_QUANT8_ASYMM", 1.0, 100], output0: ["TENSOR_QUANT8_ASYMM", 2.0, 80], }) Example({ input0: input0_data, input1: input1_data, output0: output_data, }, model=model, name=name).AddVariations("relaxed", "float16", "int32", quant8) test( name="simple", input0=Input("input0", "TENSOR_FLOAT32", "{3, 1, 2}"), input1=Input("input1", "TENSOR_FLOAT32", "{3, 1, 2}"), output0=Output("output0", "TENSOR_FLOAT32", "{3, 1, 2}"), input0_data=[1.0, 0.0, -1.0, 11.0, -2.0, -1.44], input1_data=[-1.0, 0.0, 1.0, 12.0, -3.0, -1.43], output_data=[-1.0, 0.0, -1.0, 11.0, -3.0, -1.44], ) test( name="broadcast", input0=Input("input0", "TENSOR_FLOAT32", "{3, 1, 2}"), input1=Input("input1", "TENSOR_FLOAT32", "{2}"), output0=Output("output0", "TENSOR_FLOAT32", "{3, 1, 2}"), input0_data=[1.0, 0.0, -1.0, -2.0, -1.44, 11.0], input1_data=[0.5, 2.0], output_data=[0.5, 0.0, -1.0, -2.0, -1.44, 2.0], ) # Test overflow and underflow. input0 = Input("input0", "TENSOR_QUANT8_ASYMM", "{2}, 1.0f, 128") input1 = Input("input1", "TENSOR_QUANT8_ASYMM", "{2}, 1.0f, 128") output0 = Output("output0", "TENSOR_QUANT8_ASYMM", "{2}, 0.5f, 128") model = Model().Operation("MINIMUM", input0, input1).To(output0) Example({ input0: [60, 128], input1: [128, 200], output0: [0, 128], }, model=model, name="overflow")