Lines Matching refs:scaled
33 We will call the result of the divided real the *scaled value*.
35 $$ real\_value = scaled\_value * scale $$
38 scaled values. For example, if the scale is $$ \pi $$, then fixed point values
45 Multiplication can be performed on scaled values with different scales, using
46 the same algorithm as multiplication of real values (note that product scaled
48 \mbox{ } operand} $$). Addition can be performed on scaled values, so long as
50 This makes it convenient to represent scaled values on a computer as signed
52 will be correct scaled values.
57 [adding a Real-valued *zero point*, to a scaled value](https://en.wikipedia.org/wiki/Affine_transfo…
59 scaled value:
61 $$ real\_value = scaled\_value * scale = (affine\_value - zero\_point) * scale $$
63 Essentially, affine values are a shift of the scaled values by some constant
66 [converted](#affine-to-fixed-point) to the equivalent scaled values.
74 In this case, it is inefficient to store scaled values represented by signed
91 $$ real\_value = scaled\_value * scale = (affine\_value - zero\_point) * scale $$
153 scaled\_value = affine\_value_{non\mbox{-}negative} - zero\_point_{non\mbox{-}negative}
162 affine\_value_{non\mbox{-}negative} = scaled\_value + zero\_point_{non\mbox{-}negative}