• Home
  • Raw
  • Download

Lines Matching refs:dimensionCount

67                 .type = type, .dimensionCount = 0, .dimensions = nullptr};  in addScalarOperand()
84 .dimensionCount = static_cast<uint32_t>(dimensions.size()), in addTensorOperand()
123 .dimensionCount = 1,
129 .dimensionCount = 0,
176 .dimensionCount = 1, in SetUp()
179 .type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; in SetUp()
316 .type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; in addScalarOperand()
324 .dimensionCount = 1, in addTensorOperand()
402 .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; in TEST_F()
409 .dimensionCount = 0, in TEST_F()
420 .dimensionCount = 0, in TEST_F()
433 .dimensionCount = 1, in TEST_F()
534 .dimensionCount = 2, in TEST_F()
546 .dimensionCount = 0, in TEST_F()
559 .dimensionCount = std::size(dimensions), in TEST_F()
569 .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; in TEST_F()
578 .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; in TEST_F()
608 .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; in TEST_F()
660 .dimensionCount = 1, in TEST_F()
693 .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; in TEST_F()
731 .dimensionCount = std::size(dimensions), in TEST_F()
781 .type = ANEURALNETWORKS_OEM_SCALAR, .dimensionCount = 0, .dimensions = nullptr}; in TEST_F()
790 .type = ANEURALNETWORKS_TENSOR_OEM_BYTE, .dimensionCount = 1, .dimensions = dimensions}; in TEST_F()
954 .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; in TEST_F()
956 .type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; in TEST_F()
1001 .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; in TEST_F()
1021 .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; in TEST_F()
1042 .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; in TEST_F()
1060 .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; in TEST_F()
1062 .type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; in TEST_F()
2179 .dimensionCount = 1, in TEST_F()
2215 .dimensionCount = 1, in TEST_F()
2423 .dimensionCount = std::size(dimensions), in createModel()
2438 .dimensionCount = std::size(dimensions), in TEST_F()
2456 .dimensionCount = std::size(dimensions), in TEST_F()
2488 .dimensionCount = std::size(inputDims), in TEST_F()
2493 .dimensionCount = std::size(biasDims), in TEST_F()
3025 .dimensionCount = 1, in SetUp()
3457 .type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; in createAndCompileAddModelWithType()
3513 .dimensionCount = rank, in TEST_F()
3518 .dimensionCount = rank, in TEST_F()
3555 wrongRank.dimensionCount = badRank; in TEST_F()
3585 .dimensionCount = std::size(inoutDimensions), in createAndCompileChannelQuantConvModel()
3595 .dimensionCount = std::size(filterDimensions), in createAndCompileChannelQuantConvModel()
3605 .dimensionCount = std::size(biasDimensions), in createAndCompileChannelQuantConvModel()
3613 .type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; in createAndCompileChannelQuantConvModel()
3765 .dimensionCount = std::size(goodDimensions), in TEST_F()
3770 .dimensionCount = std::size(badDimensions1), in TEST_F()
3775 .dimensionCount = std::size(badDimensions2), in TEST_F()