/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef VK_UTIL_H #define VK_UTIL_H /* common inlines and macros for vulkan drivers */ #include #include #include #include #include #include "common/vk_struct_id.h" struct vk_struct_common { VkStructureType sType; struct vk_struct_common *pNext; }; struct vk_struct_chain_iterator { vk_struct_common *value; }; #define vk_foreach_struct(__iter, __start) \ for (struct vk_struct_common *__iter = \ (struct vk_struct_common *)(__start); \ __iter; __iter = __iter->pNext) #define vk_foreach_struct_const(__iter, __start) \ for (const struct vk_struct_common *__iter = \ (const struct vk_struct_common *)(__start); \ __iter; __iter = __iter->pNext) /** * A wrapper for a Vulkan output array. A Vulkan output array is one that * follows the convention of the parameters to * vkGetPhysicalDeviceQueueFamilyProperties(). * * Example Usage: * * VkResult * vkGetPhysicalDeviceQueueFamilyProperties( * VkPhysicalDevice physicalDevice, * uint32_t* pQueueFamilyPropertyCount, * VkQueueFamilyProperties* pQueueFamilyProperties) * { * VK_OUTARRAY_MAKE(props, pQueueFamilyProperties, * pQueueFamilyPropertyCount); * * vk_outarray_append(&props, p) { * p->queueFlags = ...; * p->queueCount = ...; * } * * vk_outarray_append(&props, p) { * p->queueFlags = ...; * p->queueCount = ...; * } * * return vk_outarray_status(&props); * } */ struct __vk_outarray { /** May be null. */ void *data; /** * Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if * data is null. */ uint32_t cap; /** * Count of elements successfully written to the array. Every write is * considered successful if data is null. */ uint32_t *filled_len; /** * Count of elements that would have been written to the array if its * capacity were sufficient. Vulkan functions often return VK_INCOMPLETE * when `*filled_len < wanted_len`. */ uint32_t wanted_len; }; static inline void __vk_outarray_init(struct __vk_outarray *a, void *data, uint32_t *len) { a->data = data; a->cap = *len; a->filled_len = len; *a->filled_len = 0; a->wanted_len = 0; if (a->data == NULL) a->cap = UINT32_MAX; } static inline VkResult __vk_outarray_status(const struct __vk_outarray *a) { if (*a->filled_len < a->wanted_len) return VK_INCOMPLETE; else return VK_SUCCESS; } static inline void *__vk_outarray_next(struct __vk_outarray *a, size_t elem_size) { void *p = NULL; a->wanted_len += 1; if (*a->filled_len >= a->cap) return NULL; if (a->data != NULL) p = ((uint8_t *)a->data) + (*a->filled_len) * elem_size; *a->filled_len += 1; return p; } #define vk_outarray(elem_t) \ struct { \ struct __vk_outarray base; \ elem_t meta[]; \ } #define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0]) #define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0]) #define vk_outarray_init(a, data, len) \ __vk_outarray_init(&(a)->base, (data), (len)) #define VK_OUTARRAY_MAKE(name, data, len) \ vk_outarray(__typeof__((data)[0])) name; \ vk_outarray_init(&name, (data), (len)) #define vk_outarray_status(a) __vk_outarray_status(&(a)->base) #define vk_outarray_next(a) \ ((vk_outarray_typeof_elem(a) *)__vk_outarray_next( \ &(a)->base, vk_outarray_sizeof_elem(a))) /** * Append to a Vulkan output array. * * This is a block-based macro. For example: * * vk_outarray_append(&a, elem) { * elem->foo = ...; * elem->bar = ...; * } * * The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with * VK_OUTARRAY_MAKE(). The variable `elem` is block-scoped and has type * `elem_t *`. * * The macro unconditionally increments the array's `wanted_len`. If the array * is not full, then the macro also increment its `filled_len` and then * executes the block. When the block is executed, `elem` is non-null and * points to the newly appended element. */ #define vk_outarray_append(a, elem) \ for (vk_outarray_typeof_elem(a) *elem = vk_outarray_next(a); elem != NULL; \ elem = NULL) static inline void *__vk_find_struct(void *start, VkStructureType sType) { vk_foreach_struct(s, start) { if (s->sType == sType) return s; } return NULL; } template T *vk_find_struct(H *head) { (void)vk_get_vk_struct_id::id; return static_cast(__vk_find_struct(static_cast(head), vk_get_vk_struct_id::id)); } template const T *vk_find_struct(const H *head) { (void)vk_get_vk_struct_id::id; return static_cast( __vk_find_struct(const_cast(static_cast(head)), vk_get_vk_struct_id::id)); } uint32_t vk_get_driver_version(void); uint32_t vk_get_version_override(void); #define VK_EXT_OFFSET (1000000000UL) #define VK_ENUM_EXTENSION(__enum) \ ((__enum) >= VK_EXT_OFFSET ? ((((__enum)-VK_EXT_OFFSET) / 1000UL) + 1) : 0) #define VK_ENUM_OFFSET(__enum) \ ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum)) template T vk_make_orphan_copy(const T &vk_struct) { T copy = vk_struct; copy.pNext = NULL; return copy; } template vk_struct_chain_iterator vk_make_chain_iterator(T *vk_struct) { vk_get_vk_struct_id::id; vk_struct_chain_iterator result = { reinterpret_cast(vk_struct)}; return result; } template void vk_append_struct(vk_struct_chain_iterator *i, T *vk_struct) { vk_get_vk_struct_id::id; vk_struct_common *p = i->value; if (p->pNext) { ::abort(); } p->pNext = reinterpret_cast(vk_struct); vk_struct->pNext = NULL; *i = vk_make_chain_iterator(vk_struct); } #define VK_CHECK(x) \ do { \ VkResult err = x; \ if (err != VK_SUCCESS) { \ ::fprintf(stderr, "%s(%u) %s: %s failed, error code = %d\n", \ __FILE__, __LINE__, __FUNCTION__, #x, err); \ ::abort(); \ } \ } while (0) namespace vk_util { class CRTPBase {}; template class FindMemoryType : public U { protected: std::optional findMemoryType( uint32_t typeFilter, VkMemoryPropertyFlags properties) const { const T &self = static_cast(*this); VkPhysicalDeviceMemoryProperties memProperties; self.m_vk.vkGetPhysicalDeviceMemoryProperties(self.m_vkPhysicalDevice, &memProperties); for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) { if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } return std::nullopt; } }; template class RunSingleTimeCommand : public U { protected: void runSingleTimeCommands( VkQueue queue, std::function f) const { const T &self = static_cast(*this); VkCommandBuffer cmdBuff; VkCommandBufferAllocateInfo cmdBuffAllocInfo = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .commandPool = self.m_vkCommandPool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1}; VK_CHECK(self.m_vk.vkAllocateCommandBuffers( self.m_vkDevice, &cmdBuffAllocInfo, &cmdBuff)); VkCommandBufferBeginInfo beginInfo = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT}; VK_CHECK(self.m_vk.vkBeginCommandBuffer(cmdBuff, &beginInfo)); f(cmdBuff); VK_CHECK(self.m_vk.vkEndCommandBuffer(cmdBuff)); VkSubmitInfo submitInfo = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .commandBufferCount = 1, .pCommandBuffers = &cmdBuff}; VK_CHECK( self.m_vk.vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK(self.m_vk.vkQueueWaitIdle(queue)); self.m_vk.vkFreeCommandBuffers(self.m_vkDevice, self.m_vkCommandPool, 1, &cmdBuff); } }; template class RecordImageLayoutTransformCommands : public U { protected: void recordImageLayoutTransformCommands(VkCommandBuffer cmdBuff, VkImage image, VkImageLayout oldLayout, VkImageLayout newLayout) const { const T &self = static_cast(*this); VkImageMemoryBarrier imageBarrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT, .dstAccessMask = VK_ACCESS_SHADER_READ_BIT, .oldLayout = oldLayout, .newLayout = newLayout, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .image = image, .subresourceRange{.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1}}; self.m_vk.vkCmdPipelineBarrier(cmdBuff, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageBarrier); } }; } // namespace vk_util #endif /* VK_UTIL_H */