// // Copyright 2015 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // mathutil_unittest: // Unit tests for the utils defined in mathutil.h // #include "mathutil.h" #include using namespace gl; namespace { // Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions. // For floats f1 and f2, unpackSnorm2x16(packSnorm2x16(f1, f2)) should be same as f1 and f2. TEST(MathUtilTest, packAndUnpackSnorm2x16) { const float input[8][2] = { {0.0f, 0.0f}, {1.0f, 1.0f}, {-1.0f, 1.0f}, {-1.0f, -1.0f}, {0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f}}; const float floatFaultTolerance = 0.0001f; float outputVal1, outputVal2; for (size_t i = 0; i < 8; i++) { unpackSnorm2x16(packSnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance); EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance); } } // Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions with infinity values, // result should be clamped to [-1, 1]. TEST(MathUtilTest, packAndUnpackSnorm2x16Infinity) { const float floatFaultTolerance = 0.0001f; float outputVal1, outputVal2; unpackSnorm2x16(packSnorm2x16(std::numeric_limits::infinity(), std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance); unpackSnorm2x16(packSnorm2x16(std::numeric_limits::infinity(), -std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance); unpackSnorm2x16(packSnorm2x16(-std::numeric_limits::infinity(), -std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(-1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance); } // Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions. // For floats f1 and f2, unpackUnorm2x16(packUnorm2x16(f1, f2)) should be same as f1 and f2. TEST(MathUtilTest, packAndUnpackUnorm2x16) { const float input[8][2] = { {0.0f, 0.0f}, {1.0f, 1.0f}, {-1.0f, 1.0f}, {-1.0f, -1.0f}, {0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f}}; const float floatFaultTolerance = 0.0001f; float outputVal1, outputVal2; for (size_t i = 0; i < 8; i++) { unpackUnorm2x16(packUnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); float expected = input[i][0] < 0.0f ? 0.0f : input[i][0]; EXPECT_NEAR(expected, outputVal1, floatFaultTolerance); expected = input[i][1] < 0.0f ? 0.0f : input[i][1]; EXPECT_NEAR(expected, outputVal2, floatFaultTolerance); } } // Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions with infinity values, // result should be clamped to [0, 1]. TEST(MathUtilTest, packAndUnpackUnorm2x16Infinity) { const float floatFaultTolerance = 0.0001f; float outputVal1, outputVal2; unpackUnorm2x16(packUnorm2x16(std::numeric_limits::infinity(), std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance); unpackUnorm2x16(packUnorm2x16(std::numeric_limits::infinity(), -std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance); unpackUnorm2x16(packUnorm2x16(-std::numeric_limits::infinity(), -std::numeric_limits::infinity()), &outputVal1, &outputVal2); EXPECT_NEAR(0.0f, outputVal1, floatFaultTolerance); EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance); } // Test the correctness of packHalf2x16 and unpackHalf2x16 functions. // For floats f1 and f2, unpackHalf2x16(packHalf2x16(f1, f2)) should be same as f1 and f2. TEST(MathUtilTest, packAndUnpackHalf2x16) { const float input[8][2] = { {0.0f, 0.0f}, {1.0f, 1.0f}, {-1.0f, 1.0f}, {-1.0f, -1.0f}, {0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f}, }; const float floatFaultTolerance = 0.0005f; float outputVal1, outputVal2; for (size_t i = 0; i < 8; i++) { unpackHalf2x16(packHalf2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance); EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance); } } // Test the correctness of packUnorm4x8 and unpackUnorm4x8 functions. // For floats f1 to f4, unpackUnorm4x8(packUnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4. TEST(MathUtilTest, packAndUnpackUnorm4x8) { const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f}, {1.0f, 1.0f, 1.0f, 1.0f}, {-1.0f, 1.0f, -1.0f, 1.0f}, {-1.0f, -1.0f, -1.0f, -1.0f}, {64.0f / 255.0f, 128.0f / 255.0f, 32.0f / 255.0f, 16.0f / 255.0f}}; const float floatFaultTolerance = 0.005f; float outputVals[4]; for (size_t i = 0; i < 5; i++) { UnpackUnorm4x8(PackUnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]), outputVals); for (size_t j = 0; j < 4; j++) { float expected = input[i][j] < 0.0f ? 0.0f : input[i][j]; EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance); } } } // Test the correctness of packSnorm4x8 and unpackSnorm4x8 functions. // For floats f1 to f4, unpackSnorm4x8(packSnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4. TEST(MathUtilTest, packAndUnpackSnorm4x8) { const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f}, {1.0f, 1.0f, 1.0f, 1.0f}, {-1.0f, 1.0f, -1.0f, 1.0f}, {-1.0f, -1.0f, -1.0f, -1.0f}, {64.0f / 127.0f, -8.0f / 127.0f, 32.0f / 127.0f, 16.0f / 127.0f}}; const float floatFaultTolerance = 0.01f; float outputVals[4]; for (size_t i = 0; i < 5; i++) { UnpackSnorm4x8(PackSnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]), outputVals); for (size_t j = 0; j < 4; j++) { float expected = input[i][j]; EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance); } } } // Test the correctness of gl::isNaN function. TEST(MathUtilTest, isNaN) { EXPECT_TRUE(isNaN(bitCast(0xffu << 23 | 1u))); EXPECT_TRUE(isNaN(bitCast(1u << 31 | 0xffu << 23 | 1u))); EXPECT_TRUE(isNaN(bitCast(1u << 31 | 0xffu << 23 | 0x400000u))); EXPECT_TRUE(isNaN(bitCast(1u << 31 | 0xffu << 23 | 0x7fffffu))); EXPECT_FALSE(isNaN(0.0f)); EXPECT_FALSE(isNaN(bitCast(1u << 31 | 0xffu << 23))); EXPECT_FALSE(isNaN(bitCast(0xffu << 23))); } // Test the correctness of gl::isInf function. TEST(MathUtilTest, isInf) { EXPECT_TRUE(isInf(bitCast(0xffu << 23))); EXPECT_TRUE(isInf(bitCast(1u << 31 | 0xffu << 23))); EXPECT_FALSE(isInf(0.0f)); EXPECT_FALSE(isInf(bitCast(0xffu << 23 | 1u))); EXPECT_FALSE(isInf(bitCast(1u << 31 | 0xffu << 23 | 1u))); EXPECT_FALSE(isInf(bitCast(1u << 31 | 0xffu << 23 | 0x400000u))); EXPECT_FALSE(isInf(bitCast(1u << 31 | 0xffu << 23 | 0x7fffffu))); EXPECT_FALSE(isInf(bitCast(0xfeu << 23 | 0x7fffffu))); EXPECT_FALSE(isInf(bitCast(1u << 31 | 0xfeu << 23 | 0x7fffffu))); } TEST(MathUtilTest, CountLeadingZeros) { for (unsigned int i = 0; i < 32u; ++i) { uint32_t iLeadingZeros = 1u << (31u - i); EXPECT_EQ(i, CountLeadingZeros(iLeadingZeros)); } EXPECT_EQ(32u, CountLeadingZeros(0)); } // Some basic tests. Tests that rounding up zero produces zero. TEST(MathUtilTest, BasicRoundUp) { EXPECT_EQ(0u, rx::roundUp(0u, 4u)); EXPECT_EQ(4u, rx::roundUp(1u, 4u)); EXPECT_EQ(4u, rx::roundUp(4u, 4u)); } // Test that rounding up zero produces zero for checked ints. TEST(MathUtilTest, CheckedRoundUpZero) { auto checkedValue = rx::CheckedRoundUp(0u, 4u); ASSERT_TRUE(checkedValue.IsValid()); ASSERT_EQ(0u, checkedValue.ValueOrDie()); } // Test out-of-bounds with CheckedRoundUp TEST(MathUtilTest, CheckedRoundUpInvalid) { // The answer to this query is out of bounds. auto limit = std::numeric_limits::max(); auto checkedValue = rx::CheckedRoundUp(limit, limit - 1); ASSERT_FALSE(checkedValue.IsValid()); // Our implementation can't handle this query, despite the parameters being in range. auto checkedLimit = rx::CheckedRoundUp(limit - 1, limit); ASSERT_FALSE(checkedLimit.IsValid()); } // Test BitfieldReverse which reverses the order of the bits in an integer. TEST(MathUtilTest, BitfieldReverse) { EXPECT_EQ(0u, gl::BitfieldReverse(0u)); EXPECT_EQ(0x80000000u, gl::BitfieldReverse(1u)); EXPECT_EQ(0x1u, gl::BitfieldReverse(0x80000000u)); uint32_t bits = (1u << 4u) | (1u << 7u); uint32_t reversed = (1u << (31u - 4u)) | (1u << (31u - 7u)); EXPECT_EQ(reversed, gl::BitfieldReverse(bits)); } // Test BitCount, which counts 1 bits in an integer. TEST(MathUtilTest, BitCount) { EXPECT_EQ(0, gl::BitCount(0u)); EXPECT_EQ(32, gl::BitCount(0xFFFFFFFFu)); EXPECT_EQ(10, gl::BitCount(0x17103121u)); EXPECT_EQ(0, gl::BitCount(static_cast(0ull))); EXPECT_EQ(32, gl::BitCount(static_cast(0xFFFFFFFFull))); EXPECT_EQ(10, gl::BitCount(static_cast(0x17103121ull))); EXPECT_EQ(33, gl::BitCount(static_cast(0xFFFFFFFF80000000ull))); EXPECT_EQ(11, gl::BitCount(static_cast(0x1710312180000000ull))); } // Test ScanForward, which scans for the least significant 1 bit from a non-zero integer. TEST(MathUtilTest, ScanForward) { EXPECT_EQ(0ul, gl::ScanForward(1u)); EXPECT_EQ(16ul, gl::ScanForward(0x80010000u)); EXPECT_EQ(31ul, gl::ScanForward(0x80000000u)); EXPECT_EQ(0ul, gl::ScanForward(static_cast(1ull))); EXPECT_EQ(16ul, gl::ScanForward(static_cast(0x80010000ull))); EXPECT_EQ(31ul, gl::ScanForward(static_cast(0x80000000ull))); EXPECT_EQ(32ul, gl::ScanForward(static_cast(0x100000000ull))); EXPECT_EQ(48ul, gl::ScanForward(static_cast(0x8001000000000000ull))); EXPECT_EQ(63ul, gl::ScanForward(static_cast(0x8000000000000000ull))); } // Test ScanReverse, which scans for the most significant 1 bit from a non-zero integer. TEST(MathUtilTest, ScanReverse) { EXPECT_EQ(0ul, gl::ScanReverse(1ul)); EXPECT_EQ(16ul, gl::ScanReverse(0x00010030ul)); EXPECT_EQ(31ul, gl::ScanReverse(0x80000000ul)); } // Test FindLSB, which finds the least significant 1 bit. TEST(MathUtilTest, FindLSB) { EXPECT_EQ(-1, gl::FindLSB(0u)); EXPECT_EQ(0, gl::FindLSB(1u)); EXPECT_EQ(16, gl::FindLSB(0x80010000u)); EXPECT_EQ(31, gl::FindLSB(0x80000000u)); } // Test FindMSB, which finds the most significant 1 bit. TEST(MathUtilTest, FindMSB) { EXPECT_EQ(-1, gl::FindMSB(0u)); EXPECT_EQ(0, gl::FindMSB(1u)); EXPECT_EQ(16, gl::FindMSB(0x00010030u)); EXPECT_EQ(31, gl::FindMSB(0x80000000u)); } // Test Ldexp, which combines mantissa and exponent into a floating-point number. TEST(MathUtilTest, Ldexp) { EXPECT_EQ(2.5f, Ldexp(0.625f, 2)); EXPECT_EQ(-5.0f, Ldexp(-0.625f, 3)); EXPECT_EQ(std::numeric_limits::infinity(), Ldexp(0.625f, 129)); EXPECT_EQ(0.0f, Ldexp(1.0f, -129)); } // Test that Range::extend works as expected. TEST(MathUtilTest, RangeExtend) { RangeI range(0, 0); range.extend(5); EXPECT_EQ(0, range.low()); EXPECT_EQ(6, range.high()); EXPECT_EQ(6, range.length()); range.extend(-1); EXPECT_EQ(-1, range.low()); EXPECT_EQ(6, range.high()); EXPECT_EQ(7, range.length()); range.extend(10); EXPECT_EQ(-1, range.low()); EXPECT_EQ(11, range.high()); EXPECT_EQ(12, range.length()); } // Test that Range iteration works as expected. TEST(MathUtilTest, RangeIteration) { RangeI range(0, 10); int expected = 0; for (int value : range) { EXPECT_EQ(expected, value); expected++; } EXPECT_EQ(range.length(), expected); } // Tests for float32 to float16 conversion TEST(MathUtilTest, Float32ToFloat16) { ASSERT_EQ(float32ToFloat16(0.0f), 0x0000); ASSERT_EQ(float32ToFloat16(-0.0f), 0x8000); float inf = std::numeric_limits::infinity(); ASSERT_EQ(float32ToFloat16(inf), 0x7C00); ASSERT_EQ(float32ToFloat16(-inf), 0xFC00); // Check that NaN is converted to a value in one of the float16 NaN ranges float nan = std::numeric_limits::quiet_NaN(); uint16_t nan16 = float32ToFloat16(nan); ASSERT_TRUE(nan16 > 0xFC00 || (nan16 < 0x8000 && nan16 > 0x7C00)); ASSERT_EQ(float32ToFloat16(1.0f), 0x3C00); } } // anonymous namespace