// // Copyright 2015 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // ProgramGL.cpp: Implements the class methods for ProgramGL. #include "libANGLE/renderer/gl/ProgramGL.h" #include "common/angleutils.h" #include "common/bitset_utils.h" #include "common/debug.h" #include "common/string_utils.h" #include "common/utilities.h" #include "libANGLE/Context.h" #include "libANGLE/ProgramLinkedResources.h" #include "libANGLE/Uniform.h" #include "libANGLE/WorkerThread.h" #include "libANGLE/queryconversions.h" #include "libANGLE/renderer/gl/ContextGL.h" #include "libANGLE/renderer/gl/FunctionsGL.h" #include "libANGLE/renderer/gl/RendererGL.h" #include "libANGLE/renderer/gl/ShaderGL.h" #include "libANGLE/renderer/gl/StateManagerGL.h" #include "platform/FeaturesGL.h" #include "platform/PlatformMethods.h" namespace rx { ProgramGL::ProgramGL(const gl::ProgramState &data, const FunctionsGL *functions, const angle::FeaturesGL &features, StateManagerGL *stateManager, const std::shared_ptr &renderer) : ProgramImpl(data), mFunctions(functions), mFeatures(features), mStateManager(stateManager), mMultiviewBaseViewLayerIndexUniformLocation(-1), mProgramID(0), mRenderer(renderer), mLinkedInParallel(false) { ASSERT(mFunctions); ASSERT(mStateManager); mProgramID = mFunctions->createProgram(); } ProgramGL::~ProgramGL() { mFunctions->deleteProgram(mProgramID); mProgramID = 0; } std::unique_ptr ProgramGL::load(const gl::Context *context, gl::BinaryInputStream *stream, gl::InfoLog &infoLog) { preLink(); // Read the binary format, size and blob GLenum binaryFormat = stream->readInt(); GLint binaryLength = stream->readInt(); const uint8_t *binary = stream->data() + stream->offset(); stream->skip(binaryLength); // Load the binary mFunctions->programBinary(mProgramID, binaryFormat, binary, binaryLength); // Verify that the program linked if (!checkLinkStatus(infoLog)) { return std::make_unique(angle::Result::Incomplete); } postLink(); reapplyUBOBindingsIfNeeded(context); return std::make_unique(angle::Result::Continue); } void ProgramGL::save(const gl::Context *context, gl::BinaryOutputStream *stream) { GLint binaryLength = 0; mFunctions->getProgramiv(mProgramID, GL_PROGRAM_BINARY_LENGTH, &binaryLength); std::vector binary(std::max(binaryLength, 1)); GLenum binaryFormat = GL_NONE; mFunctions->getProgramBinary(mProgramID, binaryLength, &binaryLength, &binaryFormat, binary.data()); stream->writeInt(binaryFormat); stream->writeInt(binaryLength); stream->writeBytes(binary.data(), binaryLength); reapplyUBOBindingsIfNeeded(context); } void ProgramGL::reapplyUBOBindingsIfNeeded(const gl::Context *context) { // Re-apply UBO bindings to work around driver bugs. const angle::FeaturesGL &features = GetImplAs(context)->getFeaturesGL(); if (features.reapplyUBOBindingsAfterUsingBinaryProgram.enabled) { const auto &blocks = mState.getUniformBlocks(); for (size_t blockIndex : mState.getActiveUniformBlockBindingsMask()) { setUniformBlockBinding(static_cast(blockIndex), blocks[blockIndex].binding); } } } void ProgramGL::setBinaryRetrievableHint(bool retrievable) { // glProgramParameteri isn't always available on ES backends. if (mFunctions->programParameteri) { mFunctions->programParameteri(mProgramID, GL_PROGRAM_BINARY_RETRIEVABLE_HINT, retrievable ? GL_TRUE : GL_FALSE); } } void ProgramGL::setSeparable(bool separable) { mFunctions->programParameteri(mProgramID, GL_PROGRAM_SEPARABLE, separable ? GL_TRUE : GL_FALSE); } using LinkImplFunctor = std::function; class ProgramGL::LinkTask final : public angle::Closure { public: LinkTask(LinkImplFunctor &&functor) : mLinkImplFunctor(functor), mFallbackToMainContext(false) {} void operator()() override { mFallbackToMainContext = mLinkImplFunctor(mInfoLog); } bool fallbackToMainContext() { return mFallbackToMainContext; } const std::string &getInfoLog() { return mInfoLog; } private: LinkImplFunctor mLinkImplFunctor; bool mFallbackToMainContext; std::string mInfoLog; }; using PostLinkImplFunctor = std::function; // The event for a parallelized linking using the native driver extension. class ProgramGL::LinkEventNativeParallel final : public LinkEvent { public: LinkEventNativeParallel(PostLinkImplFunctor &&functor, const FunctionsGL *functions, GLuint programID) : mPostLinkImplFunctor(functor), mFunctions(functions), mProgramID(programID) {} angle::Result wait(const gl::Context *context) override { GLint linkStatus = GL_FALSE; mFunctions->getProgramiv(mProgramID, GL_LINK_STATUS, &linkStatus); if (linkStatus == GL_TRUE) { return mPostLinkImplFunctor(false, std::string()); } return angle::Result::Incomplete; } bool isLinking() override { GLint completionStatus = GL_FALSE; mFunctions->getProgramiv(mProgramID, GL_COMPLETION_STATUS, &completionStatus); return completionStatus == GL_FALSE; } private: PostLinkImplFunctor mPostLinkImplFunctor; const FunctionsGL *mFunctions; GLuint mProgramID; }; // The event for a parallelized linking using the worker thread pool. class ProgramGL::LinkEventGL final : public LinkEvent { public: LinkEventGL(std::shared_ptr workerPool, std::shared_ptr linkTask, PostLinkImplFunctor &&functor) : mLinkTask(linkTask), mWaitableEvent(std::shared_ptr( angle::WorkerThreadPool::PostWorkerTask(workerPool, mLinkTask))), mPostLinkImplFunctor(functor) {} angle::Result wait(const gl::Context *context) override { mWaitableEvent->wait(); return mPostLinkImplFunctor(mLinkTask->fallbackToMainContext(), mLinkTask->getInfoLog()); } bool isLinking() override { return !mWaitableEvent->isReady(); } private: std::shared_ptr mLinkTask; std::shared_ptr mWaitableEvent; PostLinkImplFunctor mPostLinkImplFunctor; }; std::unique_ptr ProgramGL::link(const gl::Context *context, const gl::ProgramLinkedResources &resources, gl::InfoLog &infoLog) { preLink(); if (mState.getAttachedShader(gl::ShaderType::Compute)) { const ShaderGL *computeShaderGL = GetImplAs(mState.getAttachedShader(gl::ShaderType::Compute)); mFunctions->attachShader(mProgramID, computeShaderGL->getShaderID()); } else { // Set the transform feedback state std::vector transformFeedbackVaryingMappedNames; for (const auto &tfVarying : mState.getTransformFeedbackVaryingNames()) { gl::ShaderType tfShaderType = mState.getExecutable().hasLinkedShaderStage(gl::ShaderType::Geometry) ? gl::ShaderType::Geometry : gl::ShaderType::Vertex; std::string tfVaryingMappedName = mState.getAttachedShader(tfShaderType) ->getTransformFeedbackVaryingMappedName(tfVarying); transformFeedbackVaryingMappedNames.push_back(tfVaryingMappedName); } if (transformFeedbackVaryingMappedNames.empty()) { if (mFunctions->transformFeedbackVaryings) { mFunctions->transformFeedbackVaryings(mProgramID, 0, nullptr, mState.getTransformFeedbackBufferMode()); } } else { ASSERT(mFunctions->transformFeedbackVaryings); std::vector transformFeedbackVaryings; for (const auto &varying : transformFeedbackVaryingMappedNames) { transformFeedbackVaryings.push_back(varying.c_str()); } mFunctions->transformFeedbackVaryings( mProgramID, static_cast(transformFeedbackVaryingMappedNames.size()), &transformFeedbackVaryings[0], mState.getTransformFeedbackBufferMode()); } for (const gl::ShaderType shaderType : gl::kAllGraphicsShaderTypes) { const ShaderGL *shaderGL = rx::SafeGetImplAs(mState.getAttachedShader(shaderType)); if (shaderGL) { mFunctions->attachShader(mProgramID, shaderGL->getShaderID()); } } // Bind attribute locations to match the GL layer. for (const sh::ShaderVariable &attribute : mState.getProgramInputs()) { if (!attribute.active || attribute.isBuiltIn()) { continue; } mFunctions->bindAttribLocation(mProgramID, attribute.location, attribute.mappedName.c_str()); } // Bind the secondary fragment color outputs defined in EXT_blend_func_extended. We only use // the API to bind fragment output locations in case EXT_blend_func_extended is enabled. // Otherwise shader-assigned locations will work. if (context->getExtensions().blendFuncExtended) { gl::Shader *fragmentShader = mState.getAttachedShader(gl::ShaderType::Fragment); if (fragmentShader && fragmentShader->getShaderVersion() == 100) { // TODO(http://anglebug.com/2833): The bind done below is only valid in case the // compiler transforms the shader outputs to the angle/webgl prefixed ones. If we // added support for running EXT_blend_func_extended on top of GLES, some changes // would be required: // - If we're backed by GLES 2.0, we shouldn't do the bind because it's not needed. // - If we're backed by GLES 3.0+, it's a bit unclear what should happen. Currently // the compiler doesn't support transforming GLSL ES 1.00 shaders to GLSL ES 3.00 // shaders in general, but support for that might be required. Or we might be // able to skip the bind in case the compiler outputs GLSL ES 1.00. const auto &shaderOutputs = mState.getAttachedShader(gl::ShaderType::Fragment)->getActiveOutputVariables(); for (const auto &output : shaderOutputs) { // TODO(http://anglebug.com/1085) This could be cleaner if the transformed names // would be set correctly in ShaderVariable::mappedName. This would require some // refactoring in the translator. Adding a mapped name dictionary for builtins // into the symbol table would be one fairly clean way to do it. if (output.name == "gl_SecondaryFragColorEXT") { mFunctions->bindFragDataLocationIndexed(mProgramID, 0, 0, "webgl_FragColor"); mFunctions->bindFragDataLocationIndexed(mProgramID, 0, 1, "angle_SecondaryFragColor"); } else if (output.name == "gl_SecondaryFragDataEXT") { // Basically we should have a loop here going over the output // array binding "webgl_FragData[i]" and "angle_SecondaryFragData[i]" array // indices to the correct color buffers and color indices. // However I'm not sure if this construct is legal or not, neither ARB or // EXT version of the spec mention this. They only mention that // automatically assigned array locations for ESSL 3.00 output arrays need // to have contiguous locations. // // In practice it seems that binding array members works on some drivers and // fails on others. One option could be to modify the shader translator to // expand the arrays into individual output variables instead of using an // array. // // For now we're going to have a limitation of assuming that // GL_MAX_DUAL_SOURCE_DRAW_BUFFERS is *always* 1 and then only bind the // basename of the variable ignoring any indices. This appears to work // uniformly. ASSERT(output.isArray() && output.getOutermostArraySize() == 1); mFunctions->bindFragDataLocationIndexed(mProgramID, 0, 0, "webgl_FragData"); mFunctions->bindFragDataLocationIndexed(mProgramID, 0, 1, "angle_SecondaryFragData"); } } } else { // ESSL 3.00 and up. const auto &outputLocations = mState.getOutputLocations(); const auto &secondaryOutputLocations = mState.getSecondaryOutputLocations(); for (size_t outputLocationIndex = 0u; outputLocationIndex < outputLocations.size(); ++outputLocationIndex) { const gl::VariableLocation &outputLocation = outputLocations[outputLocationIndex]; if (outputLocation.arrayIndex == 0 && outputLocation.used() && !outputLocation.ignored) { const sh::ShaderVariable &outputVar = mState.getOutputVariables()[outputLocation.index]; if (outputVar.location == -1) { // We only need to assign the location and index via the API in case the // variable doesn't have its location set in the shader. If a variable // doesn't have its location set in the shader it doesn't have the index // set either. ASSERT(outputVar.index == -1); mFunctions->bindFragDataLocationIndexed( mProgramID, static_cast(outputLocationIndex), 0, outputVar.mappedName.c_str()); } } } for (size_t outputLocationIndex = 0u; outputLocationIndex < secondaryOutputLocations.size(); ++outputLocationIndex) { const gl::VariableLocation &outputLocation = secondaryOutputLocations[outputLocationIndex]; if (outputLocation.arrayIndex == 0 && outputLocation.used() && !outputLocation.ignored) { const sh::ShaderVariable &outputVar = mState.getOutputVariables()[outputLocation.index]; if (outputVar.location == -1 || outputVar.index == -1) { // We only need to assign the location and index via the API in case the // variable doesn't have a shader-assigned location and index. If a // variable doesn't have its location set in the shader it doesn't have // the index set either. ASSERT(outputVar.index == -1); mFunctions->bindFragDataLocationIndexed( mProgramID, static_cast(outputLocationIndex), 1, outputVar.mappedName.c_str()); } } } } } } auto workerPool = context->getWorkerThreadPool(); auto linkTask = std::make_shared([this](std::string &infoLog) { std::string workerInfoLog; ScopedWorkerContextGL worker(mRenderer.get(), &workerInfoLog); if (!worker()) { #if !defined(NDEBUG) infoLog += "bindWorkerContext failed.\n" + workerInfoLog; #endif // Fallback to the main context. return true; } mFunctions->linkProgram(mProgramID); // Make sure the driver actually does the link job. GLint linkStatus = GL_FALSE; mFunctions->getProgramiv(mProgramID, GL_LINK_STATUS, &linkStatus); return false; }); auto postLinkImplTask = [this, &infoLog, &resources](bool fallbackToMainContext, const std::string &workerInfoLog) { infoLog << workerInfoLog; if (fallbackToMainContext) { mFunctions->linkProgram(mProgramID); } if (mState.getAttachedShader(gl::ShaderType::Compute)) { const ShaderGL *computeShaderGL = GetImplAs(mState.getAttachedShader(gl::ShaderType::Compute)); mFunctions->detachShader(mProgramID, computeShaderGL->getShaderID()); } else { for (const gl::ShaderType shaderType : gl::kAllGraphicsShaderTypes) { const ShaderGL *shaderGL = rx::SafeGetImplAs(mState.getAttachedShader(shaderType)); if (shaderGL) { mFunctions->detachShader(mProgramID, shaderGL->getShaderID()); } } } // Verify the link if (!checkLinkStatus(infoLog)) { return angle::Result::Incomplete; } if (mFeatures.alwaysCallUseProgramAfterLink.enabled) { mStateManager->forceUseProgram(mProgramID); } linkResources(resources); postLink(); return angle::Result::Continue; }; if (mRenderer->hasNativeParallelCompile()) { mFunctions->linkProgram(mProgramID); return std::make_unique(postLinkImplTask, mFunctions, mProgramID); } else if (workerPool->isAsync() && (!mFeatures.dontRelinkProgramsInParallel.enabled || !mLinkedInParallel)) { mLinkedInParallel = true; return std::make_unique(workerPool, linkTask, postLinkImplTask); } else { return std::make_unique(postLinkImplTask(true, std::string())); } } GLboolean ProgramGL::validate(const gl::Caps & /*caps*/, gl::InfoLog * /*infoLog*/) { // TODO(jmadill): implement validate return true; } void ProgramGL::setUniform1fv(GLint location, GLsizei count, const GLfloat *v) { if (mFunctions->programUniform1fv != nullptr) { mFunctions->programUniform1fv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform1fv(uniLoc(location), count, v); } } void ProgramGL::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { if (mFunctions->programUniform2fv != nullptr) { mFunctions->programUniform2fv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform2fv(uniLoc(location), count, v); } } void ProgramGL::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { if (mFunctions->programUniform3fv != nullptr) { mFunctions->programUniform3fv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform3fv(uniLoc(location), count, v); } } void ProgramGL::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { if (mFunctions->programUniform4fv != nullptr) { mFunctions->programUniform4fv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform4fv(uniLoc(location), count, v); } } void ProgramGL::setUniform1iv(GLint location, GLsizei count, const GLint *v) { if (mFunctions->programUniform1iv != nullptr) { mFunctions->programUniform1iv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform1iv(uniLoc(location), count, v); } } void ProgramGL::setUniform2iv(GLint location, GLsizei count, const GLint *v) { if (mFunctions->programUniform2iv != nullptr) { mFunctions->programUniform2iv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform2iv(uniLoc(location), count, v); } } void ProgramGL::setUniform3iv(GLint location, GLsizei count, const GLint *v) { if (mFunctions->programUniform3iv != nullptr) { mFunctions->programUniform3iv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform3iv(uniLoc(location), count, v); } } void ProgramGL::setUniform4iv(GLint location, GLsizei count, const GLint *v) { if (mFunctions->programUniform4iv != nullptr) { mFunctions->programUniform4iv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform4iv(uniLoc(location), count, v); } } void ProgramGL::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) { if (mFunctions->programUniform1uiv != nullptr) { mFunctions->programUniform1uiv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform1uiv(uniLoc(location), count, v); } } void ProgramGL::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) { if (mFunctions->programUniform2uiv != nullptr) { mFunctions->programUniform2uiv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform2uiv(uniLoc(location), count, v); } } void ProgramGL::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) { if (mFunctions->programUniform3uiv != nullptr) { mFunctions->programUniform3uiv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform3uiv(uniLoc(location), count, v); } } void ProgramGL::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) { if (mFunctions->programUniform4uiv != nullptr) { mFunctions->programUniform4uiv(mProgramID, uniLoc(location), count, v); } else { mStateManager->useProgram(mProgramID); mFunctions->uniform4uiv(uniLoc(location), count, v); } } void ProgramGL::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix2fv != nullptr) { mFunctions->programUniformMatrix2fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix2fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix3fv != nullptr) { mFunctions->programUniformMatrix3fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix3fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix4fv != nullptr) { mFunctions->programUniformMatrix4fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix4fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix2x3fv != nullptr) { mFunctions->programUniformMatrix2x3fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix2x3fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix3x2fv != nullptr) { mFunctions->programUniformMatrix3x2fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix3x2fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix2x4fv != nullptr) { mFunctions->programUniformMatrix2x4fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix2x4fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix4x2fv != nullptr) { mFunctions->programUniformMatrix4x2fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix4x2fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix3x4fv != nullptr) { mFunctions->programUniformMatrix3x4fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix3x4fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { if (mFunctions->programUniformMatrix4x3fv != nullptr) { mFunctions->programUniformMatrix4x3fv(mProgramID, uniLoc(location), count, transpose, value); } else { mStateManager->useProgram(mProgramID); mFunctions->uniformMatrix4x3fv(uniLoc(location), count, transpose, value); } } void ProgramGL::setUniformBlockBinding(GLuint uniformBlockIndex, GLuint uniformBlockBinding) { // Lazy init if (mUniformBlockRealLocationMap.empty()) { mUniformBlockRealLocationMap.reserve(mState.getUniformBlocks().size()); for (const gl::InterfaceBlock &uniformBlock : mState.getUniformBlocks()) { const std::string &mappedNameWithIndex = uniformBlock.mappedNameWithArrayIndex(); GLuint blockIndex = mFunctions->getUniformBlockIndex(mProgramID, mappedNameWithIndex.c_str()); mUniformBlockRealLocationMap.push_back(blockIndex); } } GLuint realBlockIndex = mUniformBlockRealLocationMap[uniformBlockIndex]; if (realBlockIndex != GL_INVALID_INDEX) { mFunctions->uniformBlockBinding(mProgramID, realBlockIndex, uniformBlockBinding); } } bool ProgramGL::getUniformBlockSize(const std::string & /* blockName */, const std::string &blockMappedName, size_t *sizeOut) const { ASSERT(mProgramID != 0u); GLuint blockIndex = mFunctions->getUniformBlockIndex(mProgramID, blockMappedName.c_str()); if (blockIndex == GL_INVALID_INDEX) { *sizeOut = 0; return false; } GLint dataSize = 0; mFunctions->getActiveUniformBlockiv(mProgramID, blockIndex, GL_UNIFORM_BLOCK_DATA_SIZE, &dataSize); *sizeOut = static_cast(dataSize); return true; } bool ProgramGL::getUniformBlockMemberInfo(const std::string & /* memberUniformName */, const std::string &memberUniformMappedName, sh::BlockMemberInfo *memberInfoOut) const { GLuint uniformIndex; const GLchar *memberNameGLStr = memberUniformMappedName.c_str(); mFunctions->getUniformIndices(mProgramID, 1, &memberNameGLStr, &uniformIndex); if (uniformIndex == GL_INVALID_INDEX) { *memberInfoOut = sh::kDefaultBlockMemberInfo; return false; } mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_OFFSET, &memberInfoOut->offset); mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_ARRAY_STRIDE, &memberInfoOut->arrayStride); mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_MATRIX_STRIDE, &memberInfoOut->matrixStride); // TODO(jmadill): possibly determine this at the gl::Program level. GLint isRowMajorMatrix = 0; mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_IS_ROW_MAJOR, &isRowMajorMatrix); memberInfoOut->isRowMajorMatrix = gl::ConvertToBool(isRowMajorMatrix); return true; } bool ProgramGL::getShaderStorageBlockMemberInfo(const std::string & /* memberName */, const std::string &memberUniformMappedName, sh::BlockMemberInfo *memberInfoOut) const { const GLchar *memberNameGLStr = memberUniformMappedName.c_str(); GLuint index = mFunctions->getProgramResourceIndex(mProgramID, GL_BUFFER_VARIABLE, memberNameGLStr); if (index == GL_INVALID_INDEX) { *memberInfoOut = sh::kDefaultBlockMemberInfo; return false; } constexpr int kPropCount = 5; std::array props = { {GL_ARRAY_STRIDE, GL_IS_ROW_MAJOR, GL_MATRIX_STRIDE, GL_OFFSET, GL_TOP_LEVEL_ARRAY_STRIDE}}; std::array params; GLsizei length; mFunctions->getProgramResourceiv(mProgramID, GL_BUFFER_VARIABLE, index, kPropCount, props.data(), kPropCount, &length, params.data()); ASSERT(kPropCount == length); memberInfoOut->arrayStride = params[0]; memberInfoOut->isRowMajorMatrix = params[1] != 0; memberInfoOut->matrixStride = params[2]; memberInfoOut->offset = params[3]; memberInfoOut->topLevelArrayStride = params[4]; return true; } bool ProgramGL::getShaderStorageBlockSize(const std::string &name, const std::string &mappedName, size_t *sizeOut) const { const GLchar *nameGLStr = mappedName.c_str(); GLuint index = mFunctions->getProgramResourceIndex(mProgramID, GL_SHADER_STORAGE_BLOCK, nameGLStr); if (index == GL_INVALID_INDEX) { *sizeOut = 0; return false; } GLenum prop = GL_BUFFER_DATA_SIZE; GLsizei length = 0; GLint dataSize = 0; mFunctions->getProgramResourceiv(mProgramID, GL_SHADER_STORAGE_BLOCK, index, 1, &prop, 1, &length, &dataSize); *sizeOut = static_cast(dataSize); return true; } void ProgramGL::getAtomicCounterBufferSizeMap(std::map *sizeMapOut) const { if (mFunctions->getProgramInterfaceiv == nullptr) { return; } int resourceCount = 0; mFunctions->getProgramInterfaceiv(mProgramID, GL_ATOMIC_COUNTER_BUFFER, GL_ACTIVE_RESOURCES, &resourceCount); for (int index = 0; index < resourceCount; index++) { constexpr int kPropCount = 2; std::array props = {{GL_BUFFER_BINDING, GL_BUFFER_DATA_SIZE}}; std::array params; GLsizei length; mFunctions->getProgramResourceiv(mProgramID, GL_ATOMIC_COUNTER_BUFFER, index, kPropCount, props.data(), kPropCount, &length, params.data()); ASSERT(kPropCount == length); int bufferBinding = params[0]; unsigned int bufferDataSize = params[1]; sizeMapOut->insert(std::pair(bufferBinding, bufferDataSize)); } } void ProgramGL::preLink() { // Reset the program state mUniformRealLocationMap.clear(); mUniformBlockRealLocationMap.clear(); mMultiviewBaseViewLayerIndexUniformLocation = -1; } bool ProgramGL::checkLinkStatus(gl::InfoLog &infoLog) { GLint linkStatus = GL_FALSE; mFunctions->getProgramiv(mProgramID, GL_LINK_STATUS, &linkStatus); if (linkStatus == GL_FALSE) { // Linking or program binary loading failed, put the error into the info log. GLint infoLogLength = 0; mFunctions->getProgramiv(mProgramID, GL_INFO_LOG_LENGTH, &infoLogLength); // Info log length includes the null terminator, so 1 means that the info log is an empty // string. if (infoLogLength > 1) { std::vector buf(infoLogLength); mFunctions->getProgramInfoLog(mProgramID, infoLogLength, nullptr, &buf[0]); infoLog << buf.data(); WARN() << "Program link or binary loading failed: " << buf.data(); } else { WARN() << "Program link or binary loading failed with no info log."; } // This may happen under normal circumstances if we're loading program binaries and the // driver or hardware has changed. ASSERT(mProgramID != 0); return false; } return true; } void ProgramGL::postLink() { // Query the uniform information ASSERT(mUniformRealLocationMap.empty()); const auto &uniformLocations = mState.getUniformLocations(); const auto &uniforms = mState.getUniforms(); mUniformRealLocationMap.resize(uniformLocations.size(), GL_INVALID_INDEX); for (size_t uniformLocation = 0; uniformLocation < uniformLocations.size(); uniformLocation++) { const auto &entry = uniformLocations[uniformLocation]; if (!entry.used()) { continue; } // From the GLES 3.0.5 spec: // "Locations for sequential array indices are not required to be sequential." const gl::LinkedUniform &uniform = uniforms[entry.index]; std::stringstream fullNameStr; if (uniform.isArray()) { ASSERT(angle::EndsWith(uniform.mappedName, "[0]")); fullNameStr << uniform.mappedName.substr(0, uniform.mappedName.length() - 3); fullNameStr << "[" << entry.arrayIndex << "]"; } else { fullNameStr << uniform.mappedName; } const std::string &fullName = fullNameStr.str(); GLint realLocation = mFunctions->getUniformLocation(mProgramID, fullName.c_str()); mUniformRealLocationMap[uniformLocation] = realLocation; } if (mState.usesMultiview()) { mMultiviewBaseViewLayerIndexUniformLocation = mFunctions->getUniformLocation(mProgramID, "multiviewBaseViewLayerIndex"); ASSERT(mMultiviewBaseViewLayerIndexUniformLocation != -1); } } void ProgramGL::enableSideBySideRenderingPath() const { ASSERT(mState.usesMultiview()); ASSERT(mMultiviewBaseViewLayerIndexUniformLocation != -1); ASSERT(mFunctions->programUniform1i != nullptr); mFunctions->programUniform1i(mProgramID, mMultiviewBaseViewLayerIndexUniformLocation, -1); } void ProgramGL::enableLayeredRenderingPath(int baseViewIndex) const { ASSERT(mState.usesMultiview()); ASSERT(mMultiviewBaseViewLayerIndexUniformLocation != -1); ASSERT(mFunctions->programUniform1i != nullptr); mFunctions->programUniform1i(mProgramID, mMultiviewBaseViewLayerIndexUniformLocation, baseViewIndex); } void ProgramGL::getUniformfv(const gl::Context *context, GLint location, GLfloat *params) const { mFunctions->getUniformfv(mProgramID, uniLoc(location), params); } void ProgramGL::getUniformiv(const gl::Context *context, GLint location, GLint *params) const { mFunctions->getUniformiv(mProgramID, uniLoc(location), params); } void ProgramGL::getUniformuiv(const gl::Context *context, GLint location, GLuint *params) const { mFunctions->getUniformuiv(mProgramID, uniLoc(location), params); } void ProgramGL::markUnusedUniformLocations(std::vector *uniformLocations, std::vector *samplerBindings, std::vector *imageBindings) { GLint maxLocation = static_cast(uniformLocations->size()); for (GLint location = 0; location < maxLocation; ++location) { if (uniLoc(location) == -1) { auto &locationRef = (*uniformLocations)[location]; if (mState.isSamplerUniformIndex(locationRef.index)) { GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(locationRef.index); (*samplerBindings)[samplerIndex].unreferenced = true; } else if (mState.isImageUniformIndex(locationRef.index)) { GLuint imageIndex = mState.getImageIndexFromUniformIndex(locationRef.index); (*imageBindings)[imageIndex].unreferenced = true; } // If the location has been previously bound by a glBindUniformLocation call, it should // be marked as ignored. Otherwise it's unused. if (mState.getUniformLocationBindings().getBindingByLocation(location) != -1) { locationRef.markIgnored(); } else { locationRef.markUnused(); } } } } void ProgramGL::linkResources(const gl::ProgramLinkedResources &resources) { // Gather interface block info. auto getUniformBlockSize = [this](const std::string &name, const std::string &mappedName, size_t *sizeOut) { return this->getUniformBlockSize(name, mappedName, sizeOut); }; auto getUniformBlockMemberInfo = [this](const std::string &name, const std::string &mappedName, sh::BlockMemberInfo *infoOut) { return this->getUniformBlockMemberInfo(name, mappedName, infoOut); }; resources.uniformBlockLinker.linkBlocks(getUniformBlockSize, getUniformBlockMemberInfo); auto getShaderStorageBlockSize = [this](const std::string &name, const std::string &mappedName, size_t *sizeOut) { return this->getShaderStorageBlockSize(name, mappedName, sizeOut); }; auto getShaderStorageBlockMemberInfo = [this](const std::string &name, const std::string &mappedName, sh::BlockMemberInfo *infoOut) { return this->getShaderStorageBlockMemberInfo(name, mappedName, infoOut); }; resources.shaderStorageBlockLinker.linkBlocks(getShaderStorageBlockSize, getShaderStorageBlockMemberInfo); // Gather atomic counter buffer info. std::map sizeMap; getAtomicCounterBufferSizeMap(&sizeMap); resources.atomicCounterBufferLinker.link(sizeMap); } angle::Result ProgramGL::syncState(const gl::Context *context, const gl::Program::DirtyBits &dirtyBits) { for (size_t dirtyBit : dirtyBits) { ASSERT(dirtyBit <= gl::Program::DIRTY_BIT_UNIFORM_BLOCK_BINDING_MAX); GLuint binding = static_cast(dirtyBit); setUniformBlockBinding(binding, mState.getUniformBlockBinding(binding)); } return angle::Result::Continue; } } // namespace rx