// // Copyright 2016 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // FramebufferVk.cpp: // Implements the class methods for FramebufferVk. // #include "libANGLE/renderer/vulkan/FramebufferVk.h" #include #include "common/debug.h" #include "libANGLE/Context.h" #include "libANGLE/Display.h" #include "libANGLE/formatutils.h" #include "libANGLE/renderer/renderer_utils.h" #include "libANGLE/renderer/vulkan/ContextVk.h" #include "libANGLE/renderer/vulkan/DisplayVk.h" #include "libANGLE/renderer/vulkan/RenderTargetVk.h" #include "libANGLE/renderer/vulkan/RendererVk.h" #include "libANGLE/renderer/vulkan/ResourceVk.h" #include "libANGLE/renderer/vulkan/SurfaceVk.h" #include "libANGLE/renderer/vulkan/vk_format_utils.h" #include "libANGLE/renderer/vulkan/vk_headers.h" #include "libANGLE/trace.h" namespace rx { namespace { constexpr size_t kMinReadPixelsBufferSize = 128000; // Alignment value to accommodate the largest known, for now, uncompressed Vulkan format // VK_FORMAT_R64G64B64A64_SFLOAT, while supporting 3-component types such as // VK_FORMAT_R16G16B16_SFLOAT. constexpr size_t kReadPixelsBufferAlignment = 32 * 3; // Clear values are only used when loadOp=Clear is set in clearWithRenderPassOp. When starting a // new render pass, the clear value is set to an unlikely value (bright pink) to stand out better // in case of a bug. constexpr VkClearValue kUninitializedClearValue = {{{0.95, 0.05, 0.95, 0.95}}}; // The value to assign an alpha channel that's emulated. The type is unsigned int, though it will // automatically convert to the actual data type. constexpr unsigned int kEmulatedAlphaValue = 1; bool HasSrcBlitFeature(RendererVk *renderer, RenderTargetVk *srcRenderTarget) { const VkFormat srcFormat = srcRenderTarget->getImageFormat().vkImageFormat; return renderer->hasImageFormatFeatureBits(srcFormat, VK_FORMAT_FEATURE_BLIT_SRC_BIT); } bool HasDstBlitFeature(RendererVk *renderer, RenderTargetVk *dstRenderTarget) { const VkFormat dstFormat = dstRenderTarget->getImageFormat().vkImageFormat; return renderer->hasImageFormatFeatureBits(dstFormat, VK_FORMAT_FEATURE_BLIT_DST_BIT); } // Returns false if destination has any channel the source doesn't. This means that channel was // emulated and using the Vulkan blit command would overwrite that emulated channel. bool AreSrcAndDstColorChannelsBlitCompatible(RenderTargetVk *srcRenderTarget, RenderTargetVk *dstRenderTarget) { const angle::Format &srcFormat = srcRenderTarget->getImageFormat().intendedFormat(); const angle::Format &dstFormat = dstRenderTarget->getImageFormat().intendedFormat(); // Luminance/alpha formats are not renderable, so they can't have ended up in a framebuffer to // participate in a blit. ASSERT(!dstFormat.isLUMA() && !srcFormat.isLUMA()); // All color formats have the red channel. ASSERT(dstFormat.redBits > 0 && srcFormat.redBits > 0); return (dstFormat.greenBits > 0 || srcFormat.greenBits == 0) && (dstFormat.blueBits > 0 || srcFormat.blueBits == 0) && (dstFormat.alphaBits > 0 || srcFormat.alphaBits == 0); } bool AreSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk *srcRenderTarget, RenderTargetVk *dstRenderTarget) { const angle::Format &srcFormat = srcRenderTarget->getImageFormat().intendedFormat(); const angle::Format &dstFormat = dstRenderTarget->getImageFormat().intendedFormat(); return (dstFormat.depthBits > 0 || srcFormat.depthBits == 0) && (dstFormat.stencilBits > 0 || srcFormat.stencilBits == 0); } } // anonymous namespace // static FramebufferVk *FramebufferVk::CreateUserFBO(RendererVk *renderer, const gl::FramebufferState &state) { return new FramebufferVk(renderer, state, nullptr); } // static FramebufferVk *FramebufferVk::CreateDefaultFBO(RendererVk *renderer, const gl::FramebufferState &state, WindowSurfaceVk *backbuffer) { return new FramebufferVk(renderer, state, backbuffer); } FramebufferVk::FramebufferVk(RendererVk *renderer, const gl::FramebufferState &state, WindowSurfaceVk *backbuffer) : FramebufferImpl(state), mBackbuffer(backbuffer), mFramebuffer(nullptr), mActiveColorComponents(0), mSupportDepthStencilFeedbackLoops( renderer->getFeatures().supportDepthStencilRenderingFeedbackLoops.enabled) { mReadPixelBuffer.init(renderer, VK_BUFFER_USAGE_TRANSFER_DST_BIT, kReadPixelsBufferAlignment, kMinReadPixelsBufferSize, true); } FramebufferVk::~FramebufferVk() = default; void FramebufferVk::clearCache(ContextVk *contextVk) { for (auto &entry : mFramebufferCache) { vk::FramebufferHelper &tmpFB = entry.second; tmpFB.release(contextVk); } mFramebufferCache.clear(); } void FramebufferVk::destroy(const gl::Context *context) { ContextVk *contextVk = vk::GetImpl(context); mReadPixelBuffer.release(contextVk->getRenderer()); clearCache(contextVk); } angle::Result FramebufferVk::discard(const gl::Context *context, size_t count, const GLenum *attachments) { return invalidate(context, count, attachments); } angle::Result FramebufferVk::invalidate(const gl::Context *context, size_t count, const GLenum *attachments) { // TODO(jmadill): Re-enable. See http://anglebug.com/4444 return angle::Result::Continue; } angle::Result FramebufferVk::invalidateSub(const gl::Context *context, size_t count, const GLenum *attachments, const gl::Rectangle &area) { // TODO(jmadill): Re-enable. See http://anglebug.com/4444 return angle::Result::Continue; } angle::Result FramebufferVk::clear(const gl::Context *context, GLbitfield mask) { ContextVk *contextVk = vk::GetImpl(context); bool clearColor = IsMaskFlagSet(mask, static_cast(GL_COLOR_BUFFER_BIT)); bool clearDepth = IsMaskFlagSet(mask, static_cast(GL_DEPTH_BUFFER_BIT)); bool clearStencil = IsMaskFlagSet(mask, static_cast(GL_STENCIL_BUFFER_BIT)); gl::DrawBufferMask clearColorBuffers; if (clearColor) { clearColorBuffers = mState.getEnabledDrawBuffers(); } const VkClearColorValue &clearColorValue = contextVk->getClearColorValue().color; const VkClearDepthStencilValue &clearDepthStencilValue = contextVk->getClearDepthStencilValue().depthStencil; return clearImpl(context, clearColorBuffers, clearDepth, clearStencil, clearColorValue, clearDepthStencilValue); } angle::Result FramebufferVk::clearImpl(const gl::Context *context, gl::DrawBufferMask clearColorBuffers, bool clearDepth, bool clearStencil, const VkClearColorValue &clearColorValue, const VkClearDepthStencilValue &clearDepthStencilValue) { ContextVk *contextVk = vk::GetImpl(context); const gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk); // Discard clear altogether if scissor has 0 width or height. if (scissoredRenderArea.width == 0 || scissoredRenderArea.height == 0) { return angle::Result::Continue; } // We can sometimes get to a clear operation with other pending clears (e.g. for emulated // formats). Ensure the prior clears happen before the new clear. Note that we do not defer // clears for scissored operations. Note that some clears may be redundant with the current // clear. Due to complexity we haven't implemented de-duplication here. ANGLE_TRY(flushDeferredClears(contextVk, scissoredRenderArea)); // This function assumes that only enabled attachments are asked to be cleared. ASSERT((clearColorBuffers & mState.getEnabledDrawBuffers()) == clearColorBuffers); // Adjust clear behavior based on whether the respective attachments are present; if asked to // clear a non-existent attachment, don't attempt to clear it. VkColorComponentFlags colorMaskFlags = contextVk->getClearColorMask(); bool clearColor = clearColorBuffers.any(); const gl::FramebufferAttachment *depthAttachment = mState.getDepthAttachment(); clearDepth = clearDepth && depthAttachment; ASSERT(!clearDepth || depthAttachment->isAttached()); const gl::FramebufferAttachment *stencilAttachment = mState.getStencilAttachment(); clearStencil = clearStencil && stencilAttachment; ASSERT(!clearStencil || stencilAttachment->isAttached()); uint8_t stencilMask = static_cast(contextVk->getState().getDepthStencilState().stencilWritemask); // The front-end should ensure we don't attempt to clear color if all channels are masked. ASSERT(!clearColor || colorMaskFlags != 0); // The front-end should ensure we don't attempt to clear depth if depth write is disabled. ASSERT(!clearDepth || contextVk->getState().getDepthStencilState().depthMask); // The front-end should ensure we don't attempt to clear stencil if all bits are masked. ASSERT(!clearStencil || stencilMask != 0); bool scissoredClear = scissoredRenderArea != getCompleteRenderArea(); // Special case for rendering feedback loops: clears are always valid in GL since they don't // sample from any textures. if ((clearDepth || clearStencil) && mState.hasDepthStencilFeedbackLoop()) { // We currently don't handle scissored clears with rendering feedback loops. ANGLE_VK_CHECK(contextVk, !scissoredClear, VK_ERROR_INCOMPATIBLE_DRIVER); RenderTargetVk *depthStencilRT = mRenderTargetCache.getDepthStencil(true); vk::ImageHelper &image = depthStencilRT->getImage(); vk::CommandBuffer *commandBuffer; ANGLE_TRY( contextVk->onImageWrite(image.getAspectFlags(), vk::ImageLayout::TransferDst, &image)); ANGLE_TRY(contextVk->endRenderPassAndGetCommandBuffer(&commandBuffer)); VkImageSubresourceRange range; range.aspectMask = image.getAspectFlags(); range.baseMipLevel = depthStencilRT->getLevelIndex(); range.levelCount = 1; range.baseArrayLayer = depthStencilRT->getLayerIndex(); range.layerCount = 1; commandBuffer->clearDepthStencilImage(image.getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, clearDepthStencilValue, 1, &range); clearDepth = false; clearStencil = false; } // If there is nothing to clear, return right away (for example, if asked to clear depth, but // there is no depth attachment). if (!clearColor && !clearDepth && !clearStencil) { return angle::Result::Continue; } // We can use render pass load ops if clearing depth, unmasked color or unmasked stencil. If // there's a depth mask, depth clearing is already disabled. bool maskedClearColor = clearColor && (mActiveColorComponents & colorMaskFlags) != mActiveColorComponents; bool maskedClearStencil = clearStencil && stencilMask != 0xFF; bool clearColorWithRenderPassLoadOp = clearColor && !maskedClearColor && !scissoredClear; bool clearDepthWithRenderPassLoadOp = clearDepth && !scissoredClear; bool clearStencilWithRenderPassLoadOp = clearStencil && !maskedClearStencil && !scissoredClear; // At least one of color, depth or stencil should be clearable with render pass loadOp for us // to use this clear path. bool clearAnyWithRenderPassLoadOp = clearColorWithRenderPassLoadOp || clearDepthWithRenderPassLoadOp || clearStencilWithRenderPassLoadOp; if (clearAnyWithRenderPassLoadOp) { // Clearing color is indicated by the set bits in this mask. If not clearing colors with // render pass loadOp, the default value of all-zeros means the clear is not done in // clearWithRenderPassOp below. In that case, only clear depth/stencil with render pass // loadOp. gl::DrawBufferMask clearBuffersWithRenderPassLoadOp; if (clearColorWithRenderPassLoadOp) { clearBuffersWithRenderPassLoadOp = clearColorBuffers; } clearWithRenderPassOp(clearBuffersWithRenderPassLoadOp, clearDepthWithRenderPassLoadOp, clearStencilWithRenderPassLoadOp, clearColorValue, clearDepthStencilValue); // Fallback to other methods for whatever isn't cleared here. if (clearColorWithRenderPassLoadOp) { clearColorBuffers.reset(); clearColor = false; } if (clearDepthWithRenderPassLoadOp) { clearDepth = false; } if (clearStencilWithRenderPassLoadOp) { clearStencil = false; } // If nothing left to clear, early out. if (!clearColor && !clearStencil) { return angle::Result::Continue; } } if (scissoredClear && !maskedClearColor && !maskedClearStencil) { return clearImmediatelyWithRenderPassOp(contextVk, scissoredRenderArea, clearColorBuffers, clearDepth, clearStencil, clearColorValue, clearDepthStencilValue); } // The most costly clear mode is when we need to mask out specific color channels or stencil // bits. This can only be done with a draw call. return clearWithDraw(contextVk, scissoredRenderArea, clearColorBuffers, clearDepth, clearStencil, colorMaskFlags, stencilMask, clearColorValue, clearDepthStencilValue); } angle::Result FramebufferVk::clearBufferfv(const gl::Context *context, GLenum buffer, GLint drawbuffer, const GLfloat *values) { VkClearValue clearValue = {}; bool clearDepth = false; gl::DrawBufferMask clearColorBuffers; if (buffer == GL_DEPTH) { clearDepth = true; clearValue.depthStencil.depth = values[0]; } else { clearColorBuffers.set(drawbuffer); clearValue.color.float32[0] = values[0]; clearValue.color.float32[1] = values[1]; clearValue.color.float32[2] = values[2]; clearValue.color.float32[3] = values[3]; } return clearImpl(context, clearColorBuffers, clearDepth, false, clearValue.color, clearValue.depthStencil); } angle::Result FramebufferVk::clearBufferuiv(const gl::Context *context, GLenum buffer, GLint drawbuffer, const GLuint *values) { VkClearValue clearValue = {}; gl::DrawBufferMask clearColorBuffers; clearColorBuffers.set(drawbuffer); clearValue.color.uint32[0] = values[0]; clearValue.color.uint32[1] = values[1]; clearValue.color.uint32[2] = values[2]; clearValue.color.uint32[3] = values[3]; return clearImpl(context, clearColorBuffers, false, false, clearValue.color, clearValue.depthStencil); } angle::Result FramebufferVk::clearBufferiv(const gl::Context *context, GLenum buffer, GLint drawbuffer, const GLint *values) { VkClearValue clearValue = {}; bool clearStencil = false; gl::DrawBufferMask clearColorBuffers; if (buffer == GL_STENCIL) { clearStencil = true; clearValue.depthStencil.stencil = gl::clamp(values[0], 0, std::numeric_limits::max()); } else { clearColorBuffers.set(drawbuffer); clearValue.color.int32[0] = values[0]; clearValue.color.int32[1] = values[1]; clearValue.color.int32[2] = values[2]; clearValue.color.int32[3] = values[3]; } return clearImpl(context, clearColorBuffers, false, clearStencil, clearValue.color, clearValue.depthStencil); } angle::Result FramebufferVk::clearBufferfi(const gl::Context *context, GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil) { VkClearValue clearValue = {}; clearValue.depthStencil.depth = depth; clearValue.depthStencil.stencil = gl::clamp(stencil, 0, std::numeric_limits::max()); return clearImpl(context, gl::DrawBufferMask(), true, true, clearValue.color, clearValue.depthStencil); } const gl::InternalFormat &FramebufferVk::getImplementationColorReadFormat( const gl::Context *context) const { ContextVk *contextVk = vk::GetImpl(context); GLenum sizedFormat = mState.getReadAttachment()->getFormat().info->sizedInternalFormat; const vk::Format &vkFormat = contextVk->getRenderer()->getFormat(sizedFormat); GLenum implFormat = vkFormat.actualImageFormat().fboImplementationInternalFormat; return gl::GetSizedInternalFormatInfo(implFormat); } angle::Result FramebufferVk::readPixels(const gl::Context *context, const gl::Rectangle &area, GLenum format, GLenum type, void *pixels) { // Clip read area to framebuffer. const gl::Extents &fbSize = getState().getReadPixelsAttachment(format)->getSize(); const gl::Rectangle fbRect(0, 0, fbSize.width, fbSize.height); ContextVk *contextVk = vk::GetImpl(context); gl::Rectangle clippedArea; if (!ClipRectangle(area, fbRect, &clippedArea)) { // nothing to read return angle::Result::Continue; } // Flush any deferred clears. ANGLE_TRY(flushDeferredClears(contextVk, fbRect)); const gl::State &glState = contextVk->getState(); gl::Buffer *packBuffer = glState.getTargetBuffer(gl::BufferBinding::PixelPack); GLuint outputSkipBytes = 0; PackPixelsParams params; ANGLE_TRY(vk::ImageHelper::GetReadPixelsParams(contextVk, glState.getPackState(), packBuffer, format, type, area, clippedArea, ¶ms, &outputSkipBytes)); bool flipY = contextVk->isViewportFlipEnabledForReadFBO(); switch (params.rotation = contextVk->getRotationReadFramebuffer()) { case SurfaceRotation::Identity: // Do not rotate gl_Position (surface matches the device's orientation): if (flipY) { params.area.y = fbRect.height - clippedArea.y - clippedArea.height; } break; case SurfaceRotation::Rotated90Degrees: // Rotate gl_Position 90 degrees: params.area.x = clippedArea.y; params.area.y = flipY ? clippedArea.x : fbRect.width - clippedArea.x - clippedArea.width; std::swap(params.area.width, params.area.height); break; case SurfaceRotation::Rotated180Degrees: // Rotate gl_Position 180 degrees: params.area.x = fbRect.width - clippedArea.x - clippedArea.width; params.area.y = flipY ? clippedArea.y : fbRect.height - clippedArea.y - clippedArea.height; break; case SurfaceRotation::Rotated270Degrees: // Rotate gl_Position 270 degrees: params.area.x = fbRect.height - clippedArea.y - clippedArea.height; params.area.y = flipY ? fbRect.width - clippedArea.x - clippedArea.width : clippedArea.x; std::swap(params.area.width, params.area.height); break; default: UNREACHABLE(); break; } if (flipY) { params.reverseRowOrder = !params.reverseRowOrder; } ANGLE_TRY(readPixelsImpl(contextVk, params.area, params, getReadPixelsAspectFlags(format), getReadPixelsRenderTarget(format), static_cast(pixels) + outputSkipBytes)); mReadPixelBuffer.releaseInFlightBuffers(contextVk); return angle::Result::Continue; } RenderTargetVk *FramebufferVk::getDepthStencilRenderTarget() const { // If we mask out depth/stencil feedback loops, do not allow the user to access the looped DS // render target. Passing "false" to getDepthStencil forces a return of "nullptr" for loops. return mRenderTargetCache.getDepthStencil(!mSupportDepthStencilFeedbackLoops); } RenderTargetVk *FramebufferVk::getColorDrawRenderTarget(size_t colorIndex) const { RenderTargetVk *renderTarget = mRenderTargetCache.getColorDraw(mState, colorIndex); ASSERT(renderTarget && renderTarget->getImage().valid()); return renderTarget; } RenderTargetVk *FramebufferVk::getColorReadRenderTarget() const { RenderTargetVk *renderTarget = mRenderTargetCache.getColorRead(mState); ASSERT(renderTarget && renderTarget->getImage().valid()); return renderTarget; } RenderTargetVk *FramebufferVk::getReadPixelsRenderTarget(GLenum format) const { switch (format) { case GL_DEPTH_COMPONENT: case GL_STENCIL_INDEX_OES: return getDepthStencilRenderTarget(); default: return getColorReadRenderTarget(); } } VkImageAspectFlagBits FramebufferVk::getReadPixelsAspectFlags(GLenum format) const { switch (format) { case GL_DEPTH_COMPONENT: return VK_IMAGE_ASPECT_DEPTH_BIT; case GL_STENCIL_INDEX_OES: return VK_IMAGE_ASPECT_STENCIL_BIT; default: return VK_IMAGE_ASPECT_COLOR_BIT; } } angle::Result FramebufferVk::blitWithCommand(ContextVk *contextVk, const gl::Rectangle &sourceArea, const gl::Rectangle &destArea, RenderTargetVk *readRenderTarget, RenderTargetVk *drawRenderTarget, GLenum filter, bool colorBlit, bool depthBlit, bool stencilBlit, bool flipX, bool flipY) { // Since blitRenderbufferRect is called for each render buffer that needs to be blitted, // it should never be the case that both color and depth/stencil need to be blitted at // at the same time. ASSERT(colorBlit != (depthBlit || stencilBlit)); vk::ImageHelper *srcImage = &readRenderTarget->getImage(); vk::ImageHelper *dstImage = drawRenderTarget->getImageForWrite(contextVk); VkImageAspectFlags imageAspectMask = srcImage->getAspectFlags(); VkImageAspectFlags blitAspectMask = imageAspectMask; // Remove depth or stencil aspects if they are not requested to be blitted. if (!depthBlit) { blitAspectMask &= ~VK_IMAGE_ASPECT_DEPTH_BIT; } if (!stencilBlit) { blitAspectMask &= ~VK_IMAGE_ASPECT_STENCIL_BIT; } vk::CommandBuffer *commandBuffer = nullptr; ANGLE_TRY(contextVk->onImageRead(imageAspectMask, vk::ImageLayout::TransferSrc, srcImage)); ANGLE_TRY(contextVk->onImageWrite(imageAspectMask, vk::ImageLayout::TransferDst, dstImage)); ANGLE_TRY(contextVk->endRenderPassAndGetCommandBuffer(&commandBuffer)); VkImageBlit blit = {}; blit.srcSubresource.aspectMask = blitAspectMask; blit.srcSubresource.mipLevel = readRenderTarget->getLevelIndex(); blit.srcSubresource.baseArrayLayer = readRenderTarget->getLayerIndex(); blit.srcSubresource.layerCount = 1; blit.srcOffsets[0] = {sourceArea.x0(), sourceArea.y0(), 0}; blit.srcOffsets[1] = {sourceArea.x1(), sourceArea.y1(), 1}; blit.dstSubresource.aspectMask = blitAspectMask; blit.dstSubresource.mipLevel = drawRenderTarget->getLevelIndex(); blit.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex(); blit.dstSubresource.layerCount = 1; blit.dstOffsets[0] = {destArea.x0(), destArea.y0(), 0}; blit.dstOffsets[1] = {destArea.x1(), destArea.y1(), 1}; commandBuffer->blitImage(srcImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dstImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, gl_vk::GetFilter(filter)); return angle::Result::Continue; } angle::Result FramebufferVk::blit(const gl::Context *context, const gl::Rectangle &sourceAreaIn, const gl::Rectangle &destAreaIn, GLbitfield mask, GLenum filter) { ContextVk *contextVk = vk::GetImpl(context); RendererVk *renderer = contextVk->getRenderer(); UtilsVk &utilsVk = contextVk->getUtils(); // We can sometimes end up in a blit with some clear commands saved. Ensure all clear commands // are issued before we issue the blit command. ANGLE_TRY(flushDeferredClears(contextVk, getCompleteRenderArea())); const gl::State &glState = contextVk->getState(); const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer(); const bool blitColorBuffer = (mask & GL_COLOR_BUFFER_BIT) != 0; const bool blitDepthBuffer = (mask & GL_DEPTH_BUFFER_BIT) != 0; const bool blitStencilBuffer = (mask & GL_STENCIL_BUFFER_BIT) != 0; const bool isResolve = srcFramebuffer->getCachedSamples(context, gl::AttachmentSampleType::Resource) > 1; FramebufferVk *srcFramebufferVk = vk::GetImpl(srcFramebuffer); const bool srcFramebufferFlippedY = contextVk->isViewportFlipEnabledForReadFBO(); const bool destFramebufferFlippedY = contextVk->isViewportFlipEnabledForDrawFBO(); gl::Rectangle sourceArea = sourceAreaIn; gl::Rectangle destArea = destAreaIn; // Note: GLES (all 3.x versions) require source and dest area to be identical when // resolving. ASSERT(!isResolve || (sourceArea.x == destArea.x && sourceArea.y == destArea.y && sourceArea.width == destArea.width && sourceArea.height == destArea.height)); const gl::Rectangle srcFramebufferDimensions = srcFramebufferVk->mState.getDimensions().toRect(); // If the destination is flipped in either direction, we will flip the source instead so that // the destination area is always unflipped. sourceArea = sourceArea.flip(destArea.isReversedX(), destArea.isReversedY()); destArea = destArea.removeReversal(); // Calculate the stretch factor prior to any clipping, as it needs to remain constant. const float stretch[2] = { std::abs(sourceArea.width / static_cast(destArea.width)), std::abs(sourceArea.height / static_cast(destArea.height)), }; // First, clip the source area to framebuffer. That requires transforming the dest area to // match the clipped source. gl::Rectangle absSourceArea = sourceArea.removeReversal(); gl::Rectangle clippedSourceArea; if (!gl::ClipRectangle(srcFramebufferDimensions, absSourceArea, &clippedSourceArea)) { return angle::Result::Continue; } // Resize the destination area based on the new size of source. Note again that stretch is // calculated as SrcDimension/DestDimension. gl::Rectangle srcClippedDestArea; if (isResolve) { // Source and dest areas are identical in resolve. srcClippedDestArea = clippedSourceArea; } else if (clippedSourceArea == absSourceArea) { // If there was no clipping, keep dest area as is. srcClippedDestArea = destArea; } else { // Shift dest area's x0,y0,x1,y1 by as much as the source area's got shifted (taking // stretching into account) float x0Shift = std::round((clippedSourceArea.x - absSourceArea.x) / stretch[0]); float y0Shift = std::round((clippedSourceArea.y - absSourceArea.y) / stretch[1]); float x1Shift = std::round((absSourceArea.x1() - clippedSourceArea.x1()) / stretch[0]); float y1Shift = std::round((absSourceArea.y1() - clippedSourceArea.y1()) / stretch[1]); // If the source area was reversed in any direction, the shift should be applied in the // opposite direction as well. if (sourceArea.isReversedX()) { std::swap(x0Shift, x1Shift); } if (sourceArea.isReversedY()) { std::swap(y0Shift, y1Shift); } srcClippedDestArea.x = destArea.x0() + static_cast(x0Shift); srcClippedDestArea.y = destArea.y0() + static_cast(y0Shift); int x1 = destArea.x1() - static_cast(x1Shift); int y1 = destArea.y1() - static_cast(y1Shift); srcClippedDestArea.width = x1 - srcClippedDestArea.x; srcClippedDestArea.height = y1 - srcClippedDestArea.y; } // If framebuffers are flipped in Y, flip the source and dest area (which define the // transformation regardless of clipping), as well as the blit area (which is the clipped // dest area). if (srcFramebufferFlippedY) { sourceArea.y = srcFramebufferDimensions.height - sourceArea.y; sourceArea.height = -sourceArea.height; } if (destFramebufferFlippedY) { destArea.y = mState.getDimensions().height - destArea.y; destArea.height = -destArea.height; srcClippedDestArea.y = mState.getDimensions().height - srcClippedDestArea.y - srcClippedDestArea.height; } const bool flipX = sourceArea.isReversedX() != destArea.isReversedX(); const bool flipY = sourceArea.isReversedY() != destArea.isReversedY(); // GLES doesn't allow flipping the parameters of glBlitFramebuffer if performing a resolve. ASSERT(!isResolve || (flipX == false && flipY == (srcFramebufferFlippedY != destFramebufferFlippedY))); // Again, transfer the destination flip to source, so dest is unflipped. Note that destArea // was not reversed until the final possible Y-flip. ASSERT(!destArea.isReversedX()); sourceArea = sourceArea.flip(false, destArea.isReversedY()); destArea = destArea.removeReversal(); // Clip the destination area to the framebuffer size and scissor. Note that we don't care // about the source area anymore. The offset translation is done based on the original source // and destination rectangles. The stretch factor is already calculated as well. gl::Rectangle blitArea; if (!gl::ClipRectangle(getScissoredRenderArea(contextVk), srcClippedDestArea, &blitArea)) { return angle::Result::Continue; } bool noClip = blitArea == destArea && stretch[0] == 1.0f && stretch[1] == 1.0f; bool noFlip = !flipX && !flipY; bool disableFlippingBlitWithCommand = contextVk->getRenderer()->getFeatures().disableFlippingBlitWithCommand.enabled; UtilsVk::BlitResolveParameters params; params.srcOffset[0] = sourceArea.x; params.srcOffset[1] = sourceArea.y; params.destOffset[0] = destArea.x; params.destOffset[1] = destArea.y; params.stretch[0] = stretch[0]; params.stretch[1] = stretch[1]; params.srcExtents[0] = srcFramebufferDimensions.width; params.srcExtents[1] = srcFramebufferDimensions.height; params.blitArea = blitArea; params.linear = filter == GL_LINEAR; params.flipX = flipX; params.flipY = flipY; if (blitColorBuffer) { RenderTargetVk *readRenderTarget = srcFramebufferVk->getColorReadRenderTarget(); params.srcLayer = readRenderTarget->getLayerIndex(); // Multisampled images are not allowed to have mips. ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0); // If there was no clipping and the format capabilities allow us, use Vulkan's builtin blit. // The reason clipping is prohibited in this path is that due to rounding errors, it would // be hard to guarantee the image stretching remains perfect. That also allows us not to // have to transform back the dest clipping to source. // // For simplicity, we either blit all render targets with a Vulkan command, or none. bool canBlitWithCommand = !isResolve && noClip && (noFlip || !disableFlippingBlitWithCommand) && HasSrcBlitFeature(renderer, readRenderTarget); bool areChannelsBlitCompatible = true; for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; canBlitWithCommand = canBlitWithCommand && HasDstBlitFeature(renderer, drawRenderTarget); areChannelsBlitCompatible = areChannelsBlitCompatible && AreSrcAndDstColorChannelsBlitCompatible(readRenderTarget, drawRenderTarget); } if (canBlitWithCommand && areChannelsBlitCompatible) { for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget, drawRenderTarget, filter, true, false, false, flipX, flipY)); } } // If we're not flipping, use Vulkan's builtin resolve. else if (isResolve && !flipX && !flipY && areChannelsBlitCompatible) { ANGLE_TRY(resolveColorWithCommand(contextVk, params, &readRenderTarget->getImage())); } // Otherwise use a shader to do blit or resolve. else { const vk::ImageView *readImageView = nullptr; ANGLE_TRY(readRenderTarget->getImageView(contextVk, &readImageView)); readRenderTarget->retainImageViews(contextVk); ANGLE_TRY(utilsVk.colorBlitResolve(contextVk, this, &readRenderTarget->getImage(), readImageView, params)); } } if (blitDepthBuffer || blitStencilBuffer) { RenderTargetVk *readRenderTarget = srcFramebufferVk->getDepthStencilRenderTarget(); RenderTargetVk *drawRenderTarget = mRenderTargetCache.getDepthStencil(true); params.srcLayer = readRenderTarget->getLayerIndex(); // Multisampled images are not allowed to have mips. ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0); // Similarly, only blit if there's been no clipping. bool canBlitWithCommand = !isResolve && noClip && (noFlip || !disableFlippingBlitWithCommand) && HasSrcBlitFeature(renderer, readRenderTarget) && HasDstBlitFeature(renderer, drawRenderTarget); bool areChannelsBlitCompatible = AreSrcAndDstDepthStencilChannelsBlitCompatible(readRenderTarget, drawRenderTarget); if (canBlitWithCommand && areChannelsBlitCompatible) { ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget, drawRenderTarget, filter, false, blitDepthBuffer, blitStencilBuffer, flipX, flipY)); } else { // Create depth- and stencil-only views for reading. vk::DeviceScoped depthView(contextVk->getDevice()); vk::DeviceScoped stencilView(contextVk->getDevice()); vk::ImageHelper *depthStencilImage = &readRenderTarget->getImage(); uint32_t levelIndex = readRenderTarget->getLevelIndex(); uint32_t layerIndex = readRenderTarget->getLayerIndex(); gl::TextureType textureType = vk::Get2DTextureType(depthStencilImage->getLayerCount(), depthStencilImage->getSamples()); if (blitDepthBuffer) { ANGLE_TRY(depthStencilImage->initLayerImageView( contextVk, textureType, VK_IMAGE_ASPECT_DEPTH_BIT, gl::SwizzleState(), &depthView.get(), levelIndex, 1, layerIndex, 1)); } if (blitStencilBuffer) { ANGLE_TRY(depthStencilImage->initLayerImageView( contextVk, textureType, VK_IMAGE_ASPECT_STENCIL_BIT, gl::SwizzleState(), &stencilView.get(), levelIndex, 1, layerIndex, 1)); } // If shader stencil export is not possible, defer stencil blit/stencil to another pass. bool hasShaderStencilExport = contextVk->getRenderer()->getFeatures().supportsShaderStencilExport.enabled; // Blit depth. If shader stencil export is present, blit stencil as well. if (blitDepthBuffer || (blitStencilBuffer && hasShaderStencilExport)) { const vk::ImageView *depth = blitDepthBuffer ? &depthView.get() : nullptr; const vk::ImageView *stencil = blitStencilBuffer && hasShaderStencilExport ? &stencilView.get() : nullptr; ANGLE_TRY(utilsVk.depthStencilBlitResolve(contextVk, this, depthStencilImage, depth, stencil, params)); } // If shader stencil export is not present, blit stencil through a different path. if (blitStencilBuffer && !hasShaderStencilExport) { ANGLE_TRY(utilsVk.stencilBlitResolveNoShaderExport( contextVk, this, depthStencilImage, &stencilView.get(), params)); } vk::ImageView depthViewObject = depthView.release(); vk::ImageView stencilViewObject = stencilView.release(); contextVk->addGarbage(&depthViewObject); contextVk->addGarbage(&stencilViewObject); } } return angle::Result::Continue; } // namespace rx angle::Result FramebufferVk::resolveColorWithCommand(ContextVk *contextVk, const UtilsVk::BlitResolveParameters ¶ms, vk::ImageHelper *srcImage) { vk::CommandBuffer *commandBuffer = nullptr; ANGLE_TRY( contextVk->onImageRead(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferSrc, srcImage)); VkImageResolve resolveRegion = {}; resolveRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; resolveRegion.srcSubresource.mipLevel = 0; resolveRegion.srcSubresource.baseArrayLayer = params.srcLayer; resolveRegion.srcSubresource.layerCount = 1; resolveRegion.srcOffset.x = params.srcOffset[0]; resolveRegion.srcOffset.y = params.srcOffset[1]; resolveRegion.srcOffset.z = 0; resolveRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; resolveRegion.dstSubresource.layerCount = 1; resolveRegion.dstOffset.x = params.destOffset[0]; resolveRegion.dstOffset.y = params.destOffset[1]; resolveRegion.dstOffset.z = 0; resolveRegion.extent.width = params.srcExtents[0]; resolveRegion.extent.height = params.srcExtents[1]; resolveRegion.extent.depth = 1; for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; ANGLE_TRY(contextVk->onImageWrite(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferDst, &drawRenderTarget->getImage())); ANGLE_TRY(contextVk->endRenderPassAndGetCommandBuffer(&commandBuffer)); resolveRegion.dstSubresource.mipLevel = drawRenderTarget->getLevelIndex(); resolveRegion.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex(); srcImage->resolve(&drawRenderTarget->getImage(), resolveRegion, commandBuffer); } return angle::Result::Continue; } bool FramebufferVk::checkStatus(const gl::Context *context) const { // if we have both a depth and stencil buffer, they must refer to the same object // since we only support packed_depth_stencil and not separate depth and stencil if (mState.hasSeparateDepthAndStencilAttachments()) { return false; } return true; } angle::Result FramebufferVk::invalidateImpl(ContextVk *contextVk, size_t count, const GLenum *attachments) { ASSERT(contextVk->hasStartedRenderPass()); gl::DrawBufferMask invalidateColorBuffers; bool invalidateDepthBuffer = false; bool invalidateStencilBuffer = false; for (size_t i = 0; i < count; ++i) { const GLenum attachment = attachments[i]; switch (attachment) { case GL_DEPTH: case GL_DEPTH_ATTACHMENT: invalidateDepthBuffer = true; break; case GL_STENCIL: case GL_STENCIL_ATTACHMENT: invalidateStencilBuffer = true; break; case GL_DEPTH_STENCIL_ATTACHMENT: invalidateDepthBuffer = true; invalidateStencilBuffer = true; break; default: ASSERT( (attachment >= GL_COLOR_ATTACHMENT0 && attachment <= GL_COLOR_ATTACHMENT15) || (attachment == GL_COLOR)); invalidateColorBuffers.set( attachment == GL_COLOR ? 0u : (attachment - GL_COLOR_ATTACHMENT0)); } } // Set the appropriate storeOp for attachments. size_t attachmentIndexVk = 0; for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { if (invalidateColorBuffers.test(colorIndexGL)) { contextVk->getStartedRenderPassCommands().invalidateRenderPassColorAttachment( attachmentIndexVk); } ++attachmentIndexVk; } RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil(true); if (depthStencilRenderTarget) { if (invalidateDepthBuffer) { contextVk->getStartedRenderPassCommands().invalidateRenderPassDepthAttachment( attachmentIndexVk); } if (invalidateStencilBuffer) { contextVk->getStartedRenderPassCommands().invalidateRenderPassStencilAttachment( attachmentIndexVk); } } // NOTE: Possible future optimization is to delay setting the storeOp and only do so if the // render pass is closed by itself before another draw call. Otherwise, in a situation like // this: // // draw() // invalidate() // draw() // // We would be discarding the attachments only to load them for the next draw (which is less // efficient than keeping the render pass open and not do the discard at all). While dEQP tests // this pattern, this optimization may not be necessary if no application does this. It is // expected that an application would invalidate() when it's done with the framebuffer, so the // render pass would have closed either way. ANGLE_TRY(contextVk->endRenderPass()); return angle::Result::Continue; } angle::Result FramebufferVk::updateColorAttachment(const gl::Context *context, bool deferClears, uint32_t colorIndexGL) { ContextVk *contextVk = vk::GetImpl(context); ANGLE_TRY(mRenderTargetCache.updateColorRenderTarget(context, mState, colorIndexGL)); // Update cached masks for masked clears. RenderTargetVk *renderTarget = mRenderTargetCache.getColors()[colorIndexGL]; if (renderTarget) { const angle::Format &actualFormat = renderTarget->getImageFormat().actualImageFormat(); updateActiveColorMasks(colorIndexGL, actualFormat.redBits > 0, actualFormat.greenBits > 0, actualFormat.blueBits > 0, actualFormat.alphaBits > 0); const angle::Format &sourceFormat = renderTarget->getImageFormat().intendedFormat(); mEmulatedAlphaAttachmentMask.set(colorIndexGL, sourceFormat.alphaBits == 0 && actualFormat.alphaBits > 0); contextVk->updateColorMask(context->getState().getBlendState()); if (deferClears && mState.getEnabledDrawBuffers().test(colorIndexGL)) { ANGLE_TRY(renderTarget->flushStagedUpdates(contextVk, &mDeferredClears, colorIndexGL)); } else { ANGLE_TRY(renderTarget->flushStagedUpdates(contextVk, nullptr, 0)); } } else { updateActiveColorMasks(colorIndexGL, false, false, false, false); } if (renderTarget && mState.getEnabledDrawBuffers()[colorIndexGL]) { mCurrentFramebufferDesc.update(colorIndexGL, renderTarget->getAssignSerial(contextVk)); } else { mCurrentFramebufferDesc.update(colorIndexGL, vk::kZeroAttachmentSerial); } return angle::Result::Continue; } angle::Result FramebufferVk::updateDepthStencilAttachment(const gl::Context *context, bool deferClears) { ANGLE_TRY(mRenderTargetCache.updateDepthStencilRenderTarget(context, mState)); ContextVk *contextVk = vk::GetImpl(context); updateDepthStencilAttachmentSerial(contextVk); RenderTargetVk *depthStencilRT = getDepthStencilRenderTarget(); if (depthStencilRT) { if (deferClears) { ANGLE_TRY(depthStencilRT->flushStagedUpdates(contextVk, &mDeferredClears, vk::kClearValueDepthIndex)); } else { ANGLE_TRY(depthStencilRT->flushStagedUpdates(contextVk, nullptr, 0)); } } return angle::Result::Continue; } void FramebufferVk::updateDepthStencilAttachmentSerial(ContextVk *contextVk) { RenderTargetVk *depthStencilRT = getDepthStencilRenderTarget(); if (depthStencilRT != nullptr) { mCurrentFramebufferDesc.update(vk::kFramebufferDescDepthStencilIndex, depthStencilRT->getAssignSerial(contextVk)); } else { mCurrentFramebufferDesc.update(vk::kFramebufferDescDepthStencilIndex, vk::kZeroAttachmentSerial); } } angle::Result FramebufferVk::syncState(const gl::Context *context, GLenum binding, const gl::Framebuffer::DirtyBits &dirtyBits) { ContextVk *contextVk = vk::GetImpl(context); vk::FramebufferDesc priorFramebufferDesc = mCurrentFramebufferDesc; // Only defer clears for whole draw framebuffer ops. If the scissor test is on and the scissor // rect doesn't match the draw rect, forget it. gl::Rectangle renderArea = getCompleteRenderArea(); gl::Rectangle scissoredRenderArea = ClipRectToScissor(context->getState(), renderArea, false); bool deferClears = binding == GL_DRAW_FRAMEBUFFER && renderArea == scissoredRenderArea; // For any updated attachments we'll update their Serials below ASSERT(dirtyBits.any()); for (size_t dirtyBit : dirtyBits) { switch (dirtyBit) { case gl::Framebuffer::DIRTY_BIT_DEPTH_ATTACHMENT: case gl::Framebuffer::DIRTY_BIT_DEPTH_BUFFER_CONTENTS: case gl::Framebuffer::DIRTY_BIT_STENCIL_ATTACHMENT: case gl::Framebuffer::DIRTY_BIT_STENCIL_BUFFER_CONTENTS: ANGLE_TRY(updateDepthStencilAttachment(context, deferClears)); break; case gl::Framebuffer::DIRTY_BIT_READ_BUFFER: ANGLE_TRY(mRenderTargetCache.update(context, mState, dirtyBits)); break; case gl::Framebuffer::DIRTY_BIT_DRAW_BUFFERS: // Force update of serial for enabled draw buffers mCurrentFramebufferDesc.reset(); for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { mCurrentFramebufferDesc.update( static_cast(colorIndexGL), mRenderTargetCache.getColors()[colorIndexGL]->getAssignSerial(contextVk)); } updateDepthStencilAttachmentSerial(contextVk); break; case gl::Framebuffer::DIRTY_BIT_DEFAULT_WIDTH: case gl::Framebuffer::DIRTY_BIT_DEFAULT_HEIGHT: case gl::Framebuffer::DIRTY_BIT_DEFAULT_SAMPLES: case gl::Framebuffer::DIRTY_BIT_DEFAULT_FIXED_SAMPLE_LOCATIONS: // Invalidate the cache. If we have performance critical code hitting this path we // can add related data (such as width/height) to the cache clearCache(contextVk); break; default: { static_assert(gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0 == 0, "FB dirty bits"); uint32_t colorIndexGL; if (dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_MAX) { colorIndexGL = static_cast( dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0); } else { ASSERT(dirtyBit >= gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0 && dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_MAX); colorIndexGL = static_cast( dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0); } ANGLE_TRY(updateColorAttachment(context, deferClears, colorIndexGL)); break; } } } // In some cases we'll need to force a flush of deferred clears. When we're syncing the read // framebuffer we might not get a RenderPass. Also when there are masked out cleared color // channels. if (binding == GL_READ_FRAMEBUFFER && !mDeferredClears.empty()) { ANGLE_TRY(flushDeferredClears(contextVk, scissoredRenderArea)); } // No-op redundant changes to prevent closing the RenderPass. if (mCurrentFramebufferDesc == priorFramebufferDesc) { return angle::Result::Continue; } // The FBO's new attachment may have changed the renderable area const gl::State &glState = context->getState(); ANGLE_TRY(contextVk->updateScissor(glState)); mActiveColorComponents = gl_vk::GetColorComponentFlags( mActiveColorComponentMasksForClear[0].any(), mActiveColorComponentMasksForClear[1].any(), mActiveColorComponentMasksForClear[2].any(), mActiveColorComponentMasksForClear[3].any()); ANGLE_TRY(contextVk->endRenderPass()); // Notify the ContextVk to update the pipeline desc. updateRenderPassDesc(); FramebufferVk *currentDrawFramebuffer = vk::GetImpl(context->getState().getDrawFramebuffer()); if (currentDrawFramebuffer == this) { contextVk->onDrawFramebufferChange(this); } // Deactivate Framebuffer mFramebuffer = nullptr; return angle::Result::Continue; } void FramebufferVk::updateRenderPassDesc() { mRenderPassDesc = {}; mRenderPassDesc.setSamples(getSamples()); const auto &colorRenderTargets = mRenderTargetCache.getColors(); const gl::DrawBufferMask enabledDrawBuffers = mState.getEnabledDrawBuffers(); for (size_t colorIndexGL = 0; colorIndexGL < enabledDrawBuffers.size(); ++colorIndexGL) { if (enabledDrawBuffers[colorIndexGL]) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); mRenderPassDesc.packColorAttachment( colorIndexGL, colorRenderTarget->getImage().getFormat().intendedFormatID); } else { mRenderPassDesc.packColorAttachmentGap(colorIndexGL); } } RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget(); if (depthStencilRenderTarget) { mRenderPassDesc.packDepthStencilAttachment( depthStencilRenderTarget->getImage().getFormat().intendedFormatID); } } angle::Result FramebufferVk::getFramebuffer(ContextVk *contextVk, vk::Framebuffer **framebufferOut) { // First return a presently valid Framebuffer if (mFramebuffer != nullptr) { *framebufferOut = &mFramebuffer->getFramebuffer(); return angle::Result::Continue; } // No current FB, so now check for previously cached Framebuffer auto iter = mFramebufferCache.find(mCurrentFramebufferDesc); if (iter != mFramebufferCache.end()) { if (contextVk->getRenderer()->getFeatures().enableFramebufferVkCache.enabled) { *framebufferOut = &iter->second.getFramebuffer(); return angle::Result::Continue; } else { // When cache is off just release previous entry, it will be recreated below iter->second.release(contextVk); } } vk::RenderPass *compatibleRenderPass = nullptr; ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass)); // If we've a Framebuffer provided by a Surface (default FBO/backbuffer), query it. if (mBackbuffer) { return mBackbuffer->getCurrentFramebuffer(contextVk, *compatibleRenderPass, framebufferOut); } // Gather VkImageViews over all FBO attachments, also size of attached region. std::vector attachments; gl::Extents attachmentsSize; const auto &colorRenderTargets = mRenderTargetCache.getColors(); for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); const vk::ImageView *imageView = nullptr; ANGLE_TRY(colorRenderTarget->getImageView(contextVk, &imageView)); attachments.push_back(imageView->getHandle()); ASSERT(attachmentsSize.empty() || attachmentsSize == colorRenderTarget->getExtents()); attachmentsSize = colorRenderTarget->getExtents(); } RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget(); if (depthStencilRenderTarget) { const vk::ImageView *imageView = nullptr; ANGLE_TRY(depthStencilRenderTarget->getImageView(contextVk, &imageView)); attachments.push_back(imageView->getHandle()); ASSERT(attachmentsSize.empty() || attachmentsSize == depthStencilRenderTarget->getExtents()); attachmentsSize = depthStencilRenderTarget->getExtents(); } if (attachmentsSize.empty()) { // No attachments, so use the default values. attachmentsSize.height = mState.getDefaultHeight(); attachmentsSize.width = mState.getDefaultWidth(); attachmentsSize.depth = 0; } VkFramebufferCreateInfo framebufferInfo = {}; framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebufferInfo.flags = 0; framebufferInfo.renderPass = compatibleRenderPass->getHandle(); framebufferInfo.attachmentCount = static_cast(attachments.size()); framebufferInfo.pAttachments = attachments.data(); framebufferInfo.width = static_cast(attachmentsSize.width); framebufferInfo.height = static_cast(attachmentsSize.height); framebufferInfo.layers = 1; vk::FramebufferHelper newFramebuffer; ANGLE_TRY(newFramebuffer.init(contextVk, framebufferInfo)); // Sanity check that our description matches our attachments. Can catch implementation bugs. ASSERT(static_cast(attachments.size()) == mCurrentFramebufferDesc.attachmentCount()); mFramebufferCache[mCurrentFramebufferDesc] = std::move(newFramebuffer); mFramebuffer = &mFramebufferCache[mCurrentFramebufferDesc]; *framebufferOut = &mFramebuffer->getFramebuffer(); return angle::Result::Continue; } angle::Result FramebufferVk::clearImmediatelyWithRenderPassOp( ContextVk *contextVk, const gl::Rectangle &clearArea, gl::DrawBufferMask clearColorBuffers, bool clearDepth, bool clearStencil, const VkClearColorValue &clearColorValue, const VkClearDepthStencilValue &clearDepthStencilValue) { for (size_t colorIndexGL : clearColorBuffers) { VkClearValue clearValue = getCorrectedColorClearValue(colorIndexGL, clearColorValue); mDeferredClears.store(static_cast(colorIndexGL), VK_IMAGE_ASPECT_COLOR_BIT, clearValue); } if (clearDepth) { VkClearValue clearValue; clearValue.depthStencil = clearDepthStencilValue; mDeferredClears.store(vk::kClearValueDepthIndex, VK_IMAGE_ASPECT_DEPTH_BIT, clearValue); } if (clearStencil) { VkClearValue clearValue; clearValue.depthStencil = clearDepthStencilValue; mDeferredClears.store(vk::kClearValueStencilIndex, VK_IMAGE_ASPECT_STENCIL_BIT, clearValue); } // Ensure the clear happens immediately. return flushDeferredClears(contextVk, clearArea); } angle::Result FramebufferVk::clearWithDraw(ContextVk *contextVk, const gl::Rectangle &clearArea, gl::DrawBufferMask clearColorBuffers, bool clearDepth, bool clearStencil, VkColorComponentFlags colorMaskFlags, uint8_t stencilMask, const VkClearColorValue &clearColorValue, const VkClearDepthStencilValue &clearDepthStencilValue) { if (clearDepth) { VkClearValue clearValue; clearValue.depthStencil = clearDepthStencilValue; mDeferredClears.store(vk::kClearValueDepthIndex, VK_IMAGE_ASPECT_DEPTH_BIT, clearValue); // Scissored-only clears are handled in clearImmediatelyWithRenderPassOp. ASSERT(clearColorBuffers.any() || clearStencil); } UtilsVk::ClearFramebufferParameters params = {}; params.clearArea = clearArea; params.colorClearValue = clearColorValue; params.stencilClearValue = static_cast(clearDepthStencilValue.stencil); params.stencilMask = stencilMask; params.clearColor = true; params.clearStencil = clearStencil; const auto &colorRenderTargets = mRenderTargetCache.getColors(); for (size_t colorIndexGL : clearColorBuffers) { const RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); params.colorFormat = &colorRenderTarget->getImage().getFormat().actualImageFormat(); params.colorAttachmentIndexGL = static_cast(colorIndexGL); params.colorMaskFlags = colorMaskFlags; if (mEmulatedAlphaAttachmentMask[colorIndexGL]) { params.colorMaskFlags &= ~VK_COLOR_COMPONENT_A_BIT; } ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params)); // Clear stencil only once! params.clearStencil = false; } // If there was no color clear, clear stencil alone. if (params.clearStencil) { params.clearColor = false; ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params)); } return angle::Result::Continue; } VkClearValue FramebufferVk::getCorrectedColorClearValue(size_t colorIndexGL, const VkClearColorValue &clearColor) const { VkClearValue clearValue; clearValue.color = clearColor; if (!mEmulatedAlphaAttachmentMask[colorIndexGL]) { return clearValue; } // If the render target doesn't have alpha, but its emulated format has it, clear the alpha // to 1. RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL); const vk::Format &format = renderTarget->getImageFormat(); if (format.vkFormatIsInt) { if (format.vkFormatIsUnsigned) { clearValue.color.uint32[3] = kEmulatedAlphaValue; } else { clearValue.color.int32[3] = kEmulatedAlphaValue; } } else { clearValue.color.float32[3] = kEmulatedAlphaValue; } return clearValue; } void FramebufferVk::clearWithRenderPassOp(gl::DrawBufferMask clearColorBuffers, bool clearDepth, bool clearStencil, const VkClearColorValue &clearColorValue, const VkClearDepthStencilValue &clearDepthStencilValue) { // Go through clearColorBuffers and set the appropriate loadOp and clear values. for (size_t colorIndexGL : clearColorBuffers) { ASSERT(mState.getEnabledDrawBuffers().test(colorIndexGL)); RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL); VkClearValue clearValue = getCorrectedColorClearValue(colorIndexGL, clearColorValue); gl::ImageIndex imageIndex = renderTarget->getImageIndex(); renderTarget->getImage().stageClear(imageIndex, VK_IMAGE_ASPECT_COLOR_BIT, clearValue); } // Set the appropriate loadOp and clear values for depth and stencil. VkImageAspectFlags dsAspectFlags = 0; if (clearDepth) { dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT; } if (clearStencil) { dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT; } if (dsAspectFlags) { RenderTargetVk *renderTarget = getDepthStencilRenderTarget(); ASSERT(renderTarget); VkClearValue clearValue; clearValue.depthStencil = clearDepthStencilValue; gl::ImageIndex imageIndex = renderTarget->getImageIndex(); renderTarget->getImage().stageClear(imageIndex, dsAspectFlags, clearValue); } } angle::Result FramebufferVk::getSamplePosition(const gl::Context *context, size_t index, GLfloat *xy) const { int sampleCount = getSamples(); rx::GetSamplePosition(sampleCount, index, xy); return angle::Result::Continue; } angle::Result FramebufferVk::startNewRenderPass(ContextVk *contextVk, const gl::Rectangle &renderArea, vk::CommandBuffer **commandBufferOut) { vk::Framebuffer *framebuffer = nullptr; ANGLE_TRY(getFramebuffer(contextVk, &framebuffer)); vk::AttachmentOpsArray renderPassAttachmentOps; vk::ClearValuesArray packedClearValues; ANGLE_TRY(contextVk->endRenderPass()); // Initialize RenderPass info. const auto &colorRenderTargets = mRenderTargetCache.getColors(); uint32_t currentAttachmentCount = 0; for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) { RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; ASSERT(colorRenderTarget); renderPassAttachmentOps.setLayouts(currentAttachmentCount, vk::ImageLayout::ColorAttachment, vk::ImageLayout::ColorAttachment); if (mDeferredClears.test(colorIndexGL)) { renderPassAttachmentOps.setOps(currentAttachmentCount, VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_STORE); packedClearValues.store(currentAttachmentCount, VK_IMAGE_ASPECT_COLOR_BIT, mDeferredClears[colorIndexGL]); mDeferredClears.reset(colorIndexGL); } else { renderPassAttachmentOps.setOps(currentAttachmentCount, VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); packedClearValues.store(currentAttachmentCount, VK_IMAGE_ASPECT_COLOR_BIT, kUninitializedClearValue); } ANGLE_TRY(colorRenderTarget->onColorDraw(contextVk)); currentAttachmentCount++; } RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget(); if (depthStencilRenderTarget) { VkAttachmentLoadOp depthLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD; VkAttachmentLoadOp stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD; VkAttachmentStoreOp depthStoreOp = VK_ATTACHMENT_STORE_OP_STORE; VkAttachmentStoreOp stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; if (!depthStencilRenderTarget->hasDefinedContent()) { depthLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; } renderPassAttachmentOps.setLayouts(currentAttachmentCount, vk::ImageLayout::DepthStencilAttachment, vk::ImageLayout::DepthStencilAttachment); if (mDeferredClears.testDepth() || mDeferredClears.testStencil()) { VkClearValue clearValue; if (mDeferredClears.testDepth()) { depthLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; clearValue.depthStencil.depth = mDeferredClears.getDepthValue(); mDeferredClears.reset(vk::kClearValueDepthIndex); } if (mDeferredClears.testStencil()) { stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; clearValue.depthStencil.stencil = mDeferredClears.getStencilValue(); mDeferredClears.reset(vk::kClearValueStencilIndex); } // Note the aspect is only depth here. That's intentional. packedClearValues.store(currentAttachmentCount, VK_IMAGE_ASPECT_DEPTH_BIT, clearValue); } else { // Note the aspect is only depth here. That's intentional. packedClearValues.store(currentAttachmentCount, VK_IMAGE_ASPECT_DEPTH_BIT, kUninitializedClearValue); } const vk::Format &format = depthStencilRenderTarget->getImageFormat(); if (format.hasEmulatedImageChannels()) { // If the format we picked has stencil but user did not ask for it due to hardware // limitations, use DONT_CARE for load/store. The same logic for depth follows. if (format.intendedFormat().stencilBits == 0) { stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; } if (format.intendedFormat().depthBits == 0) { depthLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; depthStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; } } renderPassAttachmentOps.setOps(currentAttachmentCount, depthLoadOp, depthStoreOp); renderPassAttachmentOps.setStencilOps(currentAttachmentCount, stencilLoadOp, stencilStoreOp); // This must be called after hasDefinedContent() since it will set content to valid. We are // tracking content valid very loosely here that as long as it is attached, it assumes will // have valid content. The only time it has undefined content is between swap and // startNewRenderPass ANGLE_TRY(depthStencilRenderTarget->onDepthStencilDraw(contextVk)); currentAttachmentCount++; } return contextVk->flushAndBeginRenderPass(*framebuffer, renderArea, mRenderPassDesc, renderPassAttachmentOps, packedClearValues, commandBufferOut); } void FramebufferVk::updateActiveColorMasks(size_t colorIndexGL, bool r, bool g, bool b, bool a) { mActiveColorComponentMasksForClear[0].set(colorIndexGL, r); mActiveColorComponentMasksForClear[1].set(colorIndexGL, g); mActiveColorComponentMasksForClear[2].set(colorIndexGL, b); mActiveColorComponentMasksForClear[3].set(colorIndexGL, a); } const gl::DrawBufferMask &FramebufferVk::getEmulatedAlphaAttachmentMask() const { return mEmulatedAlphaAttachmentMask; } angle::Result FramebufferVk::readPixelsImpl(ContextVk *contextVk, const gl::Rectangle &area, const PackPixelsParams &packPixelsParams, VkImageAspectFlagBits copyAspectFlags, RenderTargetVk *renderTarget, void *pixels) { ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::readPixelsImpl"); uint32_t level = renderTarget->getLevelIndex(); uint32_t layer = renderTarget->getLayerIndex(); return renderTarget->getImage().readPixels(contextVk, area, packPixelsParams, copyAspectFlags, level, layer, pixels, &mReadPixelBuffer); } gl::Extents FramebufferVk::getReadImageExtents() const { RenderTargetVk *readRenderTarget = mRenderTargetCache.getColorRead(mState); ASSERT(readRenderTarget->getExtents().width == mState.getDimensions().width); ASSERT(readRenderTarget->getExtents().height == mState.getDimensions().height); return readRenderTarget->getExtents(); } gl::Rectangle FramebufferVk::getCompleteRenderArea() const { const gl::Box &dimensions = mState.getDimensions(); return gl::Rectangle(0, 0, dimensions.width, dimensions.height); } gl::Rectangle FramebufferVk::getScissoredRenderArea(ContextVk *contextVk) const { const gl::Rectangle renderArea = getCompleteRenderArea(); bool invertViewport = contextVk->isViewportFlipEnabledForDrawFBO(); gl::Rectangle scissoredArea = ClipRectToScissor(contextVk->getState(), renderArea, false); gl::Rectangle rotatedScissoredArea; RotateRectangle(contextVk->getRotationDrawFramebuffer(), invertViewport, renderArea.width, renderArea.height, scissoredArea, &rotatedScissoredArea); return rotatedScissoredArea; } RenderTargetVk *FramebufferVk::getFirstRenderTarget() const { for (auto *renderTarget : mRenderTargetCache.getColors()) { if (renderTarget) { return renderTarget; } } return getDepthStencilRenderTarget(); } GLint FramebufferVk::getSamples() const { RenderTargetVk *firstRT = getFirstRenderTarget(); return firstRT ? firstRT->getImage().getSamples() : 0; } angle::Result FramebufferVk::flushDeferredClears(ContextVk *contextVk, const gl::Rectangle &renderArea) { if (mDeferredClears.empty()) return angle::Result::Continue; return contextVk->startRenderPass(renderArea, nullptr); } } // namespace rx