// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "../testBase.h" int test_read_image_2D(cl_context context, cl_command_queue queue, image_descriptor *imageInfo, MTdata d, cl_mem_flags flags) { int error; clMemWrapper image; // Generate some data to test against BufferOwningPtr imageValues; generate_random_image_data( imageInfo, imageValues, d ); if( gDebugTrace ) { log_info( " - Creating %s image %d by %d...\n", gTestMipmaps?"mipmapped":"", (int)imageInfo->width, (int)imageInfo->height ); if( gTestMipmaps ) log_info( " with %llu mip levels\n", (unsigned long long) imageInfo->num_mip_levels ); } // Construct testing sources if(!gTestMipmaps) { image = create_image_2d(context, flags, imageInfo->format, imageInfo->width, imageInfo->height, 0, NULL, &error); if( image == NULL ) { log_error( "ERROR: Unable to create 2D image of size %d x %d (%s)", (int)imageInfo->width, (int)imageInfo->height, IGetErrorString( error ) ); return -1; } } else { cl_image_desc image_desc = {0}; image_desc.image_type = CL_MEM_OBJECT_IMAGE2D; image_desc.image_width = imageInfo->width; image_desc.image_height = imageInfo->height; image_desc.num_mip_levels = imageInfo->num_mip_levels; image = clCreateImage(context, flags, imageInfo->format, &image_desc, NULL, &error); if( error != CL_SUCCESS ) { log_error( "ERROR: Unable to create %d level mipmapped 2D image of size %d x %d (pitch %d ) (%s)",(int)imageInfo->num_mip_levels, (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->rowPitch, IGetErrorString( error ) ); return error; } } if( gDebugTrace ) log_info( " - Writing image...\n" ); size_t origin[ 3 ] = { 0, 0, 0 }; size_t region[ 3 ] = { 0, 0, 1 }; size_t fullImageSize; if( gTestMipmaps ) { fullImageSize = (size_t)compute_mipmapped_image_size( *imageInfo ); } else { fullImageSize = imageInfo->height * imageInfo->rowPitch; } BufferOwningPtr resultValues(malloc(fullImageSize)); size_t imgValMipLevelOffset = 0; for( size_t lod = 0; (gTestMipmaps && lod < imageInfo->num_mip_levels) || (!gTestMipmaps && lod < 1); lod++) { float lod_float = (float) lod; origin[2] = lod; size_t width_lod, height_lod, row_pitch_lod; width_lod = (imageInfo->width >> lod) ? (imageInfo->width >> lod) : 1; height_lod = (imageInfo->height >> lod) ? (imageInfo->height >> lod) : 1; row_pitch_lod = gTestMipmaps ? (width_lod * get_pixel_size( imageInfo->format )): imageInfo->rowPitch; region[0] = width_lod; region[1] = height_lod; if ( gDebugTrace && gTestMipmaps) { log_info(" - Working at mipLevel :%llu\n", (unsigned long long)lod); } error = clEnqueueWriteImage(queue, image, CL_FALSE, origin, region, ( gEnablePitch ? row_pitch_lod : 0 ), 0, (char*)imageValues + imgValMipLevelOffset, 0, NULL, NULL); if (error != CL_SUCCESS) { log_error( "ERROR: Unable to write to 2D image of size %d x %d \n", (int)width_lod, (int)height_lod ); return -1; } // To verify, we just read the results right back and see whether they match the input if( gDebugTrace ) { log_info( " - Initing result array...\n" ); } // Note: we read back without any pitch, to verify pitch actually WORKED size_t scanlineSize = width_lod * get_pixel_size( imageInfo->format ); size_t imageSize = scanlineSize * height_lod; memset( resultValues, 0xff, imageSize ); if( gDebugTrace ) log_info( " - Reading results...\n" ); error = clEnqueueReadImage( queue, image, CL_TRUE, origin, region, 0, 0, resultValues, 0, NULL, NULL ); test_error( error, "Unable to read image values" ); // Verify scanline by scanline, since the pitches are different char *sourcePtr = (char *)imageValues + imgValMipLevelOffset; char *destPtr = resultValues; for( size_t y = 0; y < height_lod; y++ ) { if( memcmp( sourcePtr, destPtr, scanlineSize ) != 0 ) { if(gTestMipmaps) { log_error("At mip level %llu\n",(unsigned long long) lod); } log_error( "ERROR: Scanline %d did not verify for image size %d,%d pitch %d (extra %d bytes)\n", (int)y, (int)width_lod, (int)height_lod, (int)row_pitch_lod, (int)row_pitch_lod - (int)width_lod * (int)get_pixel_size( imageInfo->format ) ); log_error( "First few values: \n" ); log_error( " Input: " ); uint32_t *s = (uint32_t *)sourcePtr; uint32_t *d = (uint32_t *)destPtr; for( int q = 0; q < 12; q++ ) log_error( "%08x ", s[ q ] ); log_error( "\nOutput: " ); for( int q = 0; q < 12; q++ ) log_error( "%08x ", d[ q ] ); log_error( "\n" ); int outX, outY; int offset = (int)get_pixel_size( imageInfo->format ) * (int)( width_lod - 16 ); if( offset < 0 ) offset = 0; int foundCount = debug_find_vector_in_image( (char*)imageValues + imgValMipLevelOffset, imageInfo, destPtr + offset, get_pixel_size( imageInfo->format ), &outX, &outY, NULL ); if( foundCount > 0 ) { int returnedOffset = ( (int)y * (int)width_lod + offset / (int)get_pixel_size( imageInfo->format ) ) - ( outY * (int)width_lod + outX ); if( memcmp( sourcePtr + returnedOffset * get_pixel_size( imageInfo->format ), destPtr, get_pixel_size( imageInfo->format ) * 8 ) == 0 ) log_error( " Values appear to be offsetted by %d\n", returnedOffset ); else log_error( " Calculated offset is %d but unable to verify\n", returnedOffset ); } else { log_error( " Unable to determine offset\n" ); } return -1; } sourcePtr += row_pitch_lod; destPtr += scanlineSize; } imgValMipLevelOffset += width_lod * height_lod * get_pixel_size( imageInfo->format ); } return 0; } int test_read_image_set_2D(cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format, cl_mem_flags flags) { size_t maxWidth, maxHeight; cl_ulong maxAllocSize, memSize; image_descriptor imageInfo = { 0 }; RandomSeed seed( gRandomSeed ); size_t pixelSize; imageInfo.type = CL_MEM_OBJECT_IMAGE2D; imageInfo.format = format; imageInfo.depth = imageInfo.slicePitch = 0; pixelSize = get_pixel_size( imageInfo.format ); int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL ); test_error( error, "Unable to get max image 2D size from device" ); if (memSize > (cl_ulong)SIZE_MAX) { memSize = (cl_ulong)SIZE_MAX; } if( gTestSmallImages ) { for( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ ) { imageInfo.rowPitch = imageInfo.width * pixelSize; for( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ ) { if (gTestMipmaps) imageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(imageInfo.width, imageInfo.height, 0), seed); if( gDebugTrace ) log_info( " at size %d,%d\n", (int)imageInfo.width, (int)imageInfo.height ); int ret = test_read_image_2D(context, queue, &imageInfo, seed, flags); if( ret ) return -1; } } } else if( gTestMaxImages ) { // Try a specific set of maximum sizes size_t numbeOfSizes; size_t sizes[100][3]; get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D, imageInfo.format); for( size_t idx = 0; idx < numbeOfSizes; idx++ ) { imageInfo.width = sizes[idx][0]; imageInfo.height = sizes[idx][1]; imageInfo.rowPitch = imageInfo.width * pixelSize; if (gTestMipmaps) imageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(imageInfo.width, imageInfo.height, 0), seed); log_info("Testing %d x %d\n", (int)imageInfo.width, (int)imageInfo.height); if( gDebugTrace ) log_info( " at max size %d,%d\n", (int)maxWidth, (int)maxHeight ); if (test_read_image_2D(context, queue, &imageInfo, seed, flags)) return -1; } } else { for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ ) { cl_ulong size; // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that // image, the result array, plus offset arrays, will fit in the global ram space do { imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed ); imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed ); if (gTestMipmaps) { imageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(imageInfo.width, imageInfo.height, 0), seed); imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format ); size = compute_mipmapped_image_size( imageInfo ); } else { imageInfo.rowPitch = imageInfo.width * pixelSize; if( gEnablePitch ) { size_t extraWidth = (int)random_log_in_range( 0, 64, seed ); imageInfo.rowPitch += extraWidth * pixelSize; } size = (size_t)imageInfo.rowPitch * (size_t)imageInfo.height * 4; } } while( size > maxAllocSize || ( size / 3 ) > memSize ); if( gDebugTrace ) log_info( " at size %d,%d (row pitch %d) out of %d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.rowPitch, (int)maxWidth, (int)maxHeight ); int ret = test_read_image_2D(context, queue, &imageInfo, seed, flags); if( ret ) return -1; } } return 0; }