// Auto-generated file. Do not edit! // Template: src/f32-ibilinear-chw/neon.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include void xnn_f32_ibilinear_chw_ukernel__neon_p4( size_t output_pixels, size_t channels, const float**restrict input, size_t input_offset, const float*restrict weights, float*restrict output, size_t input_increment) XNN_DISABLE_TSAN { assert(output_pixels != 0); assert(channels != 0); assert(input_increment % sizeof(float) == 0); do { const float** i = input; const float* w = weights; size_t p = output_pixels; for (; p >= 4; p -= 4) { const float* itl0 = (const float*) ((uintptr_t) i[0] + input_offset); const float* ibl0 = (const float*) ((uintptr_t) i[1] + input_offset); const float* itl1 = (const float*) ((uintptr_t) i[2] + input_offset); const float* ibl1 = (const float*) ((uintptr_t) i[3] + input_offset); const float* itl2 = (const float*) ((uintptr_t) i[4] + input_offset); const float* ibl2 = (const float*) ((uintptr_t) i[5] + input_offset); const float* itl3 = (const float*) ((uintptr_t) i[6] + input_offset); const float* ibl3 = (const float*) ((uintptr_t) i[7] + input_offset); i += 8; const float32x4x2_t vw = vld2q_f32(w); w += 8; const float32x2_t vtltr0 = vld1_f32(itl0); const float32x2_t vblbr0 = vld1_f32(ibl0); const float32x2_t vtltr1 = vld1_f32(itl1); const float32x2_t vblbr1 = vld1_f32(ibl1); const float32x2_t vtltr2 = vld1_f32(itl2); const float32x2_t vblbr2 = vld1_f32(ibl2); const float32x2_t vtltr3 = vld1_f32(itl3); const float32x2_t vblbr3 = vld1_f32(ibl3); const float32x4_t valphah = vw.val[0]; const float32x4_t valphav = vw.val[1]; const float32x4_t vtltr01 = vcombine_f32(vtltr0, vtltr1); const float32x4_t vblbr01 = vcombine_f32(vblbr0, vblbr1); const float32x4_t vtltr23 = vcombine_f32(vtltr2, vtltr3); const float32x4_t vblbr23 = vcombine_f32(vblbr2, vblbr3); const float32x4_t vldrd01 = vsubq_f32(vblbr01, vtltr01); const float32x4_t vldrd23 = vsubq_f32(vblbr23, vtltr23); const float32x4x2_t vld_t = vuzpq_f32(vldrd01, vldrd23); const float32x4_t vld = vld_t.val[0]; const float32x4_t vrd = vld_t.val[1]; const float32x4x2_t vtl_t = vuzpq_f32(vtltr01, vtltr23); const float32x4_t vtl = vtl_t.val[0]; const float32x4_t vtr = vtl_t.val[1]; const float32x4_t vl = vmlaq_f32(vtl, vld, valphav); const float32x4_t vr = vmlaq_f32(vtr, vrd, valphav); const float32x4_t vd = vsubq_f32(vr, vl); const float32x4_t vo = vmlaq_f32(vl, vd, valphah); vst1q_f32(output, vo); output += 4; } if XNN_UNLIKELY(p != 0) { if (p & 2) { const float32x2x2_t vw = vld2_f32(w); w += 4; const float32x2_t valphah = vw.val[0]; const float32x2_t valphav = vw.val[1]; const float* itl0 = (const float*) ((uintptr_t) i[0] + input_offset); const float* ibl0 = (const float*) ((uintptr_t) i[1] + input_offset); const float* itl1 = (const float*) ((uintptr_t) i[2] + input_offset); const float* ibl1 = (const float*) ((uintptr_t) i[3] + input_offset); i += 4; const float32x2_t vtltr0 = vld1_f32(itl0); const float32x2_t vblbr0 = vld1_f32(ibl0); const float32x2_t vtltr1 = vld1_f32(itl1); const float32x2_t vblbr1 = vld1_f32(ibl1); const float32x2_t vldrd0 = vsub_f32(vblbr0, vtltr0); const float32x2_t vldrd1 = vsub_f32(vblbr1, vtltr1); const float32x2x2_t vld_t = vuzp_f32(vldrd0, vldrd1); const float32x2_t vld = vld_t.val[0]; const float32x2_t vrd = vld_t.val[1]; const float32x2x2_t vtl_t = vuzp_f32(vtltr0, vtltr1); const float32x2_t vtl = vtl_t.val[0]; const float32x2_t vtr = vtl_t.val[1]; const float32x2_t vl = vmla_f32(vtl, vld, valphav); const float32x2_t vr = vmla_f32(vtr, vrd, valphav); const float32x2_t vd = vsub_f32(vr, vl); const float32x2_t vo = vmla_f32(vl, vd, valphah); vst1_f32(output, vo); output += 2; } if (p & 1) { // We are computing the following formula: // result = (1 - alpha_h) * (1 - alpha_v) * top_left + // alpha_h * (1 - alpha_v) * top_right + // (1 - alpha_h) * alpha_v * bottom_left + // alpha_h * alpha_v * bottom_right. // // Rearranging gives // result = left + alpha_h * (right - left), // where // left = top_left + alpha_v * (bottom_left - top_left), // right = top_right + alpha_v * (bottom_right - top_right). const float alphah = *w; const float32x2_t valphav = vld1_dup_f32(w + 1); w += 2; const float* itl = (const float*) ((uintptr_t) i[0] + input_offset); const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset); i += 2; const float32x2_t vtltr = vld1_f32(itl); const float32x2_t vblbr = vld1_f32(ibl); // Compute at once // left_diff = bottom_left - top_left // right_diff = bottom_right - top_right const float32x2_t vldrd = vsub_f32(vblbr, vtltr); const float32x2_t vlr = vmla_f32(vtltr, vldrd, valphav); // Extract them and compute the result. const float l = vget_lane_f32(vlr, 0); const float r = vget_lane_f32(vlr, 1); *output++ = l + alphah * (r - l); } } input_offset += input_increment; } while (--channels != 0); }