// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert PIXEL_TILE >= 1 $assert PIXEL_TILE % 4 == 0 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include void xnn_f32_ibilinear_chw_ukernel__wasmsimd_p${PIXEL_TILE}( size_t output_pixels, size_t channels, const float**restrict input, size_t input_offset, const float*restrict weights, float*restrict output, size_t input_increment) XNN_DISABLE_TSAN { assert(output_pixels != 0); assert(channels != 0); assert(input_increment % sizeof(float) == 0); do { const float** i = input; const float* w = weights; size_t p = output_pixels; $if PIXEL_TILE > 4: for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) { $for P in range(PIXEL_TILE): const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); i += 2 * ${PIXEL_TILE}; $for P in range(0, PIXEL_TILE, 4): const v128_t vw${ABC[P:P+4]}p0 = wasm_v128_load(w + ${2 * P}); const v128_t vw${ABC[P:P+4]}p1 = wasm_v128_load(w + ${2 * P + 4}); w += 2 * ${PIXEL_TILE}; $for P in range(0, PIXEL_TILE, 2): const v128_t vtltr${ABC[P]} = wasm_v64x2_load_splat(itl${ABC[P]}); const v128_t vblbr${ABC[P]} = wasm_v64x2_load_splat(ibl${ABC[P]}); const double vtltr${ABC[P+1]} = *((const double*) itl${ABC[P+1]}); const double vblbr${ABC[P+1]} = *((const double*) ibl${ABC[P+1]}); $for P in range(0, PIXEL_TILE, 4): const v128_t valphah${ABC[P:P+4]} = wasm_v32x4_shuffle(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, 0, 2, 4, 6); const v128_t valphav${ABC[P:P+4]} = wasm_v32x4_shuffle(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, 1, 3, 5, 7); $for P in range(0, PIXEL_TILE, 2): const v128_t vtltr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vtltr${ABC[P]}, 1, vtltr${ABC[P+1]}); const v128_t vblbr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vblbr${ABC[P]}, 1, vblbr${ABC[P+1]}); $for P in range(0, PIXEL_TILE, 2): const v128_t vldrd${ABC[P:P+2]} = wasm_f32x4_sub(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]}); $for P in range(0, PIXEL_TILE, 4): const v128_t vld${ABC[P:P+4]} = wasm_v32x4_shuffle(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, 0, 2, 4, 6); const v128_t vrd${ABC[P:P+4]} = wasm_v32x4_shuffle(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, 1, 3, 5, 7); $for P in range(0, PIXEL_TILE, 4): const v128_t vtl${ABC[P:P+4]} = wasm_v32x4_shuffle(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, 0, 2, 4, 6); const v128_t vtr${ABC[P:P+4]} = wasm_v32x4_shuffle(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, 1, 3, 5, 7); $for P in range(0, PIXEL_TILE, 4): const v128_t vl${ABC[P:P+4]} = wasm_f32x4_add(vtl${ABC[P:P+4]}, wasm_f32x4_mul(vld${ABC[P:P+4]}, valphav${ABC[P:P+4]})); const v128_t vr${ABC[P:P+4]} = wasm_f32x4_add(vtr${ABC[P:P+4]}, wasm_f32x4_mul(vrd${ABC[P:P+4]}, valphav${ABC[P:P+4]})); $for P in range(0, PIXEL_TILE, 4): const v128_t vd${ABC[P:P+4]} = wasm_f32x4_sub(vr${ABC[P:P+4]}, vl${ABC[P:P+4]}); $for P in range(0, PIXEL_TILE, 4): const v128_t vo${ABC[P:P+4]} = wasm_f32x4_add(vl${ABC[P:P+4]}, wasm_f32x4_mul(vd${ABC[P:P+4]}, valphah${ABC[P:P+4]})); $for P in range(0, PIXEL_TILE, 4): wasm_v128_store(output + ${P}, vo${ABC[P:P+4]}); output += ${PIXEL_TILE}; } for (; p >= 4; p -= 4) { $for P in range(4): const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); i += 8; const v128_t vw0 = wasm_v128_load(w); const v128_t vw1 = wasm_v128_load(w + 4); w += 8; $for P in range(0, 4, 2): const v128_t vtltr${ABC[P]} = wasm_v64x2_load_splat(itl${P}); const v128_t vblbr${ABC[P]} = wasm_v64x2_load_splat(ibl${P}); const double vtltr${ABC[P+1]} = *((const double*) itl${P+1}); const double vblbr${ABC[P+1]} = *((const double*) ibl${P+1}); const v128_t valphah = wasm_v32x4_shuffle(vw0, vw1, 0, 2, 4, 6); const v128_t valphav = wasm_v32x4_shuffle(vw0, vw1, 1, 3, 5, 7); $for P in range(0, 4, 2): const v128_t vtltr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vtltr${ABC[P]}, 1, vtltr${ABC[P+1]}); const v128_t vblbr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vblbr${ABC[P]}, 1, vblbr${ABC[P+1]}); $for P in range(0, 4, 2): const v128_t vldrd${ABC[P:P+2]} = wasm_f32x4_sub(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]}); const v128_t vld = wasm_v32x4_shuffle(vldrd01, vldrd23, 0, 2, 4, 6); const v128_t vrd = wasm_v32x4_shuffle(vldrd01, vldrd23, 1, 3, 5, 7); const v128_t vtl = wasm_v32x4_shuffle(vtltr01, vtltr23, 0, 2, 4, 6); const v128_t vtr = wasm_v32x4_shuffle(vtltr01, vtltr23, 1, 3, 5, 7); const v128_t vl = wasm_f32x4_add(vtl, wasm_f32x4_mul(vld, valphav)); const v128_t vr = wasm_f32x4_add(vtr, wasm_f32x4_mul(vrd, valphav)); const v128_t vd = wasm_f32x4_sub(vr, vl); const v128_t vo = wasm_f32x4_add(vl, wasm_f32x4_mul(vd, valphah)); wasm_v128_store(output, vo); output += 4; } if XNN_UNLIKELY(p != 0) { if (p & 2) { const v128_t vw = wasm_v128_load(w); w += 4; const v128_t valphah = wasm_v32x4_shuffle(vw, vw, 0, 2, 0, 2); const v128_t valphav = wasm_v32x4_shuffle(vw, vw, 1, 3, 1, 3); $for P in range(2): const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); i += 4; const v128_t vtltr = wasm_f64x2_replace_lane(wasm_v64x2_load_splat(itl0), 1, *((const double*) itl1)); const v128_t vblbr = wasm_f64x2_replace_lane(wasm_v64x2_load_splat(ibl0), 1, *((const double*) ibl1)); const v128_t vldrd = wasm_f32x4_sub(vblbr, vtltr); const v128_t vld = wasm_v32x4_shuffle(vldrd, vldrd, 0, 2, 0, 2); const v128_t vrd = wasm_v32x4_shuffle(vldrd, vldrd, 1, 3, 1, 3); const v128_t vtl = wasm_v32x4_shuffle(vtltr, vtltr, 0, 2, 0, 2); const v128_t vtr = wasm_v32x4_shuffle(vtltr, vtltr, 1, 3, 1, 3); const v128_t vl = wasm_f32x4_add(vtl, wasm_f32x4_mul(vld, valphav)); const v128_t vr = wasm_f32x4_add(vtr, wasm_f32x4_mul(vrd, valphav)); const v128_t vd = wasm_f32x4_sub(vr, vl); const v128_t vo = wasm_f32x4_add(vl, wasm_f32x4_mul(vd, valphah)); *((double*) output) = wasm_f64x2_extract_lane(vo, 0); output += 2; } if (p & 1) { // We are computing the following formula: // result = (1 - alpha_h) * (1 - alpha_v) * top_left + // alpha_h * (1 - alpha_v) * top_right + // (1 - alpha_h) * alpha_v * bottom_left + // alpha_h * alpha_v * bottom_right. // // Rearranging gives // result = left + alpha_h * (right - left), // where // left = top_left + alpha_v * (bottom_left - top_left), // right = top_right + alpha_v * (bottom_right - top_right). const float alphah = *w; const v128_t valphav = wasm_v32x4_load_splat(w + 1); w += 2; const float* itl = (const float*) ((uintptr_t) i[0] + input_offset); const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset); i += 2; const v128_t vtltr = wasm_v64x2_load_splat(itl); const v128_t vblbr = wasm_v64x2_load_splat(ibl); // Compute at once // left_diff = bottom_left - top_left // right_diff = bottom_right - top_right const v128_t vldrd = wasm_f32x4_sub(vblbr, vtltr); const v128_t vlr = wasm_f32x4_add(vtltr, wasm_f32x4_mul(vldrd, valphav)); // Extract them and compute the result. const float l = wasm_f32x4_extract_lane(vlr, 0); const float r = wasm_f32x4_extract_lane(vlr, 1); *output++ = l + alphah * (r - l); } } input_offset += input_increment; } while (--channels != 0); }