// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x160_acc5( size_t elements, const float* input, float* sum, float max) { assert(elements % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); __m512 vacc2 = _mm512_setzero_ps(); __m512 vacc3 = _mm512_setzero_ps(); __m512 vacc4 = _mm512_setzero_ps(); for (; elements >= 160 * sizeof(float); elements -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); input += 160; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); // Compute reduced argument elements := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Reconstruct the final f value: // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**elements * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); const __m512 vf9 = _mm512_scalef_ps(vp9, vn9); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc2 = _mm512_add_ps(vacc2, vf2); vacc3 = _mm512_add_ps(vacc3, vf3); vacc4 = _mm512_add_ps(vacc4, vf4); vacc0 = _mm512_add_ps(vacc0, vf5); vacc1 = _mm512_add_ps(vacc1, vf6); vacc2 = _mm512_add_ps(vacc2, vf7); vacc3 = _mm512_add_ps(vacc3, vf8); vacc4 = _mm512_add_ps(vacc4, vf9); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); vacc2 = _mm512_add_ps(vacc2, vacc3); vacc0 = _mm512_add_ps(vacc0, vacc2); vacc0 = _mm512_add_ps(vacc0, vacc4); __m512 vacc = vacc0; for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument elements := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**elements * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (elements != 0) { // Prepare mask for valid 32-bit elements (depends on elements). elements >>= 2 /* log2(sizeof(float)) */; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument elements := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**elements * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }