// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/scalar-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_f32_raddstoreexpminusmax_ukernel__scalar_p5_x4( size_t elements, const float* input, float* output, float* sum, float vi_max) { assert(elements % sizeof(float) == 0); const float vmagic_bias = 0x1.8000FEp23f; // The smallest x for which expf(x) is normalized. const float vdenorm_cutoff = -0x1.5D589Ep6f; const float vlog2e = 0x1.715476p+0f; // Last 7 bits are zeroes const float vminus_ln2_hi = -0x1.62E400p-1f; const float vminus_ln2_lo = -0x1.7F7D1Cp-20f; const float vc1 = 0x1.FFFFF6p-1f; const float vc2 = 0x1.FFFDC6p-2f; const float vc3 = 0x1.555A80p-3f; const float vc4 = 0x1.573A1Ap-5f; const float vc5 = 0x1.0F9F9Cp-7f; float vacc0 = 0.0f; for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) { // Load 4 inputs at a time. const float vi0 = input[0]; const float vi1 = input[1]; const float vi2 = input[2]; const float vi3 = input[3]; input += 4; // Subtract maximum input x := i - i_max. This implies x <= 0. const float vx0 = vi0 - vi_max; const float vx1 = vi1 - vi_max; const float vx2 = vi2 - vi_max; const float vx3 = vi3 - vi_max; // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The trick with adding large number is valid only within // certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. float vn0 = vx0 * vlog2e + vmagic_bias; float vn1 = vx1 * vlog2e + vmagic_bias; float vn2 = vx2 * vlog2e + vmagic_bias; float vn3 = vx3 * vlog2e + vmagic_bias; // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. const float vs0 = fp32_from_bits(fp32_to_bits(vn0) << 23); const float vs1 = fp32_from_bits(fp32_to_bits(vn1) << 23); const float vs2 = fp32_from_bits(fp32_to_bits(vn2) << 23); const float vs3 = fp32_from_bits(fp32_to_bits(vn3) << 23); // Subtract the large number back to get final n := round(x / log(2)). vn0 -= vmagic_bias; vn1 -= vmagic_bias; vn2 -= vmagic_bias; vn3 -= vmagic_bias; // Compute reduced argument t := x - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float vt0 = vn0 * vminus_ln2_hi + vx0; float vt1 = vn1 * vminus_ln2_hi + vx1; float vt2 = vn2 * vminus_ln2_hi + vx2; float vt3 = vn3 * vminus_ln2_hi + vx3; vt0 = vn0 * vminus_ln2_lo + vt0; vt1 = vn1 * vminus_ln2_lo + vt1; vt2 = vn2 * vminus_ln2_lo + vt2; vt3 = vn3 * vminus_ln2_lo + vt3; // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. float vp0 = vc5 * vt0 + vc4; float vp1 = vc5 * vt1 + vc4; float vp2 = vc5 * vt2 + vc4; float vp3 = vc5 * vt3 + vc4; vp0 = vp0 * vt0 + vc3; vp1 = vp1 * vt1 + vc3; vp2 = vp2 * vt2 + vc3; vp3 = vp3 * vt3 + vc3; vp0 = vp0 * vt0 + vc2; vp1 = vp1 * vt1 + vc2; vp2 = vp2 * vt2 + vc2; vp3 = vp3 * vt3 + vc2; vp0 = vp0 * vt0 + vc1; vp1 = vp1 * vt1 + vc1; vp2 = vp2 * vt2 + vc1; vp3 = vp3 * vt3 + vc1; // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 *= vs0; vt1 *= vs1; vt2 *= vs2; vt3 *= vs3; float vf0 = vt0 * vp0 + vs0; float vf1 = vt1 * vp1 + vs1; float vf2 = vt2 * vp2 + vs2; float vf3 = vt3 * vp3 + vs3; // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) { vf0 = 0.0f; } if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) { vf1 = 0.0f; } if XNN_UNPREDICTABLE(vx2 < vdenorm_cutoff) { vf2 = 0.0f; } if XNN_UNPREDICTABLE(vx3 < vdenorm_cutoff) { vf3 = 0.0f; } // Store 4 outputs at a time. output[0] = vf0; output[1] = vf1; output[2] = vf2; output[3] = vf3; output += 4; // Accumulate computed exponents. vacc0 += vf0; vacc0 += vf1; vacc0 += vf2; vacc0 += vf3; } float vacc = vacc0; for (; elements >= sizeof(float); elements -= sizeof(float)) { // Load 1 input at a time. const float vi = *input++; // Subtract maximum input x := i - i_max. This implies x <= 0. const float vx = vi - vi_max; // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The trick with adding large number is valid only within // certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. float vn = vx * vlog2e + vmagic_bias; // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. const float vs = fp32_from_bits(fp32_to_bits(vn) << 23); // Subtract the large number back to get final n := round(x / log(2)). vn -= vmagic_bias; // Compute reduced argument t := x - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float vt = vn * vminus_ln2_hi + vx; vt = vn * vminus_ln2_lo + vt; // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. float vp = vc5 * vt + vc4; vp = vp * vt + vc3; vp = vp * vt + vc2; vp = vp * vt + vc1; // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt *= vs; float vf = vt * vp + vs; // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) { vf = 0.0f; } // Store 1 output at a time. *output++ = vf; // Accumulate computed exponents. vacc += vf; } *sum = vacc; }