// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include void xnn_math_f32_expm1minus__avx2_rr1_lut8_p4_perm( size_t n, const float* input, float* output) { assert(n % (8 * sizeof(float)) == 0); // The largest x for which expm1f(x) is saturated at -1.0f. const __m256 vsat_cutoff = _mm256_set1_ps(-0x1.154246p+4f); // Large number such that ulp(magic bias) == exp2(-3) const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p20f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); // Table of exp2(k / 8) values decremented (as integer) by (k << 20), k = 0..7 const __m256i vtable = _mm256_set_epi32( 0x3F7AC0C7, 0x3F7744FD, 0x3F75672A, 0x3F7504F3, 0x3F75FED7, 0x3F7837F0, 0x3F7B95C2, 0x3F800000); const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f); // Coefficient of polynomial approximation // exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * c4))) // on [-log(2)/16, log(2)/16] const __m256 vc4 = _mm256_set1_ps(0x1.5558ECp-5f); const __m256 vc3 = _mm256_set1_ps(0x1.555C20p-3f); const __m256 vc2 = _mm256_set1_ps(0x1.000000p-1f); const __m256 vone = _mm256_set1_ps(1.0f); for (; n != 0; n -= 8 * sizeof(float)) { __m256 vx = _mm256_loadu_ps(input); // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680. // To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation // expm1f(sat_cutoff) == -1.0f. The order of operands in the VMAXPS instruction matters: it ensures that NaN // inputs are passed unchanged. vx = _mm256_max_ps(vsat_cutoff, vx); // Compute reduced argument n := round(x / log(2), 3). // We do it by adding a large number (magic bias), which cause rounding of the result to 3 fractional bits, then // subtracing the large number back. The first addition is combined with multiplication by log2e into a single FMA // instruction. The trick with adding large number is valid only within certain bounds (|x / log(2)| <= 2**19, // i.e. |x| <= 0x1.62E43p+18 = 363408.75), but that is acceptable, because inputs x are restricted to // [-17.328680, 0]. // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range. __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n // has 4 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps: // 1. Fetch 2**frac(n) from the table using the 4 low bits of n, as integer. Note that the fetched values are in // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized // number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not // lower than -25. // // Shift bits 3:11 into 23:31 (position of floating-point exponent). const __m256i ven = _mm256_slli_epi32(_mm256_castps_si256(vn), 20); // Use bits 0:3 bits of n, as integer, as an index for table lookup of l := 2**frac(n). const __m256i vl = _mm256_permutevar8x32_epi32(vtable, _mm256_castps_si256(vn)); // Adjust exponent of the value l fetched from the table to get the final s value. const __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ven)); // Subtract the large number back to get final n := round(x / log(2), 3). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - n * log(2). __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); // Compute degree-4 polynomial approximation for exp(t) - 1 on [-log(2)/16, log(2)/16]. // P(t) = t * (1 + t * (c2 + t * (c3 + t * c4))) = t + t * (t * (c2 + t * (c3 + t * c4))) = t + t * p __m256 vp = _mm256_fmadd_ps(vc4, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_mul_ps(vp, vt); // Reconstruct the exp(x) - 1 value: // exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * c4)))) - 1 // = (s - 1) + s * (t + t * p) // = ((t * s) + (t * s) * p) + (s - 1) vt = _mm256_mul_ps(vt, vs); const __m256 vsm1 = _mm256_sub_ps(vs, vone); vp = _mm256_fmadd_ps(vp, vt, vt); const __m256 vf = _mm256_add_ps(vp, vsm1); _mm256_storeu_ps(output, vf); input += 8; output += 8; } }