// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include // Table of exp2(k / 16) values decremented (as integer) by (k << 19), k = 0..15 extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_16[16]; void xnn_math_f32_expm1minus__neonfma_rr1_lut16_p3( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // The largest x for which expm1f(x) is saturated at -1.0f. const float32x4_t vsat_cutoff = vmovq_n_f32(-0x1.154246p+4f); // Large number such that ulp(magic bias) == exp2(-4) const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p19f); const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f); // Mask for the lowest 4 bits const int32x4_t vindex_mask = vmovq_n_s32(0xF); const float32x4_t vminus_ln2 = vmovq_n_f32(-0x1.62E430p-1f); // Coefficient of polynomial approximation // exp(t) - 1 ~ t * (1 + t * (c2 + t * c3)) // on [-log(2)/32, log(2)/32] const float32x4_t vc3 = vmovq_n_f32(0x1.55561Cp-3f); const float32x4_t vc2 = vmovq_n_f32(0x1.0001ECp-1f); const float32x4_t vone = vmovq_n_f32(1.0f); for (; n != 0; n -= 4 * sizeof(float)) { float32x4_t vx = vld1q_f32(input); input += 4; // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680. // To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation // expm1f(sat_cutoff) == -1.0f. NaN inputs are passed unchanged. vx = vmaxq_f32(vx, vsat_cutoff); // Compute reduced argument n := round(x / log(2), 4). // We do it by adding a large number (magic bias), which cause rounding of the result to 4 fractional bits, then // subtracing the large number back. The addition is combined with multiplication by log2e into a single FMA // instruction. The trick with adding large number is valid only within certain bounds (|x / log(2)| <= 2**18, i.e. // |x| <= 0x1.62E43p+17 = 181704.375), but that is acceptable, because inputs x are restricted to [-17.328680, 0]. // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range. float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e); // Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n // has 4 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps: // 1. Fetch 2**frac(n) from the table using the 4 low bits of n, as integer. Note that the fetched values are in // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized // number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not // lower than -25. // // Shift bits 4:12 into 23:31 (position of floating-point exponent). const int32x4_t ven = vshlq_n_s32(vreinterpretq_s32_f32(vn), 19); // Use bits 0:4 of n, as integer, as an index for table lookup of l := 2**frac(n). const uint64x2_t vidx = vreinterpretq_u64_s32(vshlq_n_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask), 2)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx_lo)); float32x2_t vl_hi = vld1_dup_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx_hi)); vl_lo = vld1_lane_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx_lo >> 32)), vl_lo, 1); vl_hi = vld1_lane_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx_hi >> 32)), vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); // Adjust exponent of the value l fetched from the table to get the final s value. const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ven)); // Subtract the large number back to get final n := round(x / log(2), 4). vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := x - n * log(2). float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2); // Compute degree-3 polynomial approximation for exp(t) - 1 on [-log(2)/32, log(2)/32]. // P(t) = t * (1 + t * (c2 + t * c3)) = t + t * (t * (c2 + t * c3)) = t + t * p float32x4_t vp = vfmaq_f32(vc2, vc3, vt); vp = vmulq_f32(vp, vt); // Reconstruct the exp(x) - 1 value: // exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * c3))) - 1 // = (s - 1) + s * (t + t * p) // = ((t * s) + (t * s) * p) + (s - 1) vt = vmulq_f32(vt, vs); const float32x4_t vsm1 = vsubq_f32(vs, vone); vp = vfmaq_f32(vt, vp, vt); const float32x4_t vf = vaddq_f32(vp, vsm1); vst1q_f32(output, vf); output += 4; } }