// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_math_f32_expminus__neonfma_rr2_p5( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f); const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f); const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f); const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f); // Coefficient of polynomial approximation // exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // on [-log(2)/2, log(2)/2] const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f); const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f); const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f); const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f); const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f); // The smallest x for which expf(x) is normalized. const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f); for (; n != 0; n -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The first addition is combined with multiplication by // log2e into a single FMA instruction. The trick with adding large number is valid only within certain bounds // (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs outside // of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end of the // algorithm. float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); // Subtract the large number back to get final n := round(x / log(2)) as a floating-point number. vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := x - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi); vt = vfmaq_f32(vt, vn, vminus_ln2_lo); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]: // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); // Reconstruct the exp(x) value: // exp(x) = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = vmulq_f32(vt, vs); float32x4_t vf = vfmaq_f32(vs, vp, vt); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff))); vst1q_f32(output, vf); output += 4; } }