// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_math_f32_expminus__sse2_rr2_p5( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f); const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f); // Last 7 bits are zeroes const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f); const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f); // Coefficient of polynomial approximation // exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // on [-log(2)/2, log(2)/2] const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f); const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f); const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f); const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f); const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f); // The smallest x for which expf(x) is normalized. const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f); for (; n != 0; n -= 4 * sizeof(float)) { const __m128 vx = _mm_loadu_ps(input); // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The trick with adding large number is valid only within // certain bounds (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very // end of the algorithm. __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23)); // Subtract the large number back to get final n := round(x / log(2)) as a floating-point number. vn = _mm_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx); vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]: // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1); // Reconstruct the exp(x) value: // exp(x) = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm_mul_ps(vt, vs); __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf); _mm_storeu_ps(output, vf); input += 4; output += 4; } }