// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include void xnn_math_f32_roundne__scalar_addsub( size_t n, const float* input, float* output) { assert(n % sizeof(float) == 0); // Addition of this number to a floating-point number x cause rounding of the result to an integer. Then this magic // number is subtracted back from the result to get original x rounded to integer. This trick works only for // 0 <= x < 2**24, but all numbers in 2**23 <= x < 2**24 range are integers, so we can further restrict it to // 0 <= x < 2**23. Then the upper bound of the validity interval is conveniently the same as the magic number. const float vmagic_number = 0x1.000000p+23f; for (; n != 0; n -= sizeof(float)) { const float vx = *input++; // The rounding trick works only for x >= 0, so we compute absolute value of x, round it, and restore the sign in // the end. This method works for round-to-nearest-even because it is an odd function. const float vabsx = fabsf(vx); // Addition-subtraction trick with the magic number to cause rounding to integer for abs(x). // Note: the result is valid only for 0 <= abs(x) < 2**23. // Note: addition-subtraction implicitly converts SNaN inputs to QNaNs. const float vrndabsx = (vabsx + vmagic_number) - vmagic_number; // Select between the abs(x) rounded using addition-subtraction trick and the abs(x) value. // For abs(x) < 2**23, the result is abs(x) rounded via addition-subtraction trick. // For abs(x) >= 2**23, the result is abs(x) itself (already an integer). // For NaN inputs, the result is abs(x) converted to QNaN as a side-effect of addition-subtraction. const float vabsy = XNN_UNPREDICTABLE(vabsx >= vmagic_number) ? vabsx : vrndabsx; // Restore the sign of the rounded value. const float vy = copysignf(vabsy, vx); *output++ = vy; } }