// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include void xnn_math_f32_roundz__wasmsimd_cvt( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // Threshold of non-integral values in single-precision floating-point representation. // All inputs above this threshold (by absolute value) are integer numbers. const v128_t vintegral_threshold = wasm_f32x4_splat(0x1.000000p+23f); // Mask for the sign of a single-precision floating-point number. const v128_t vsign_mask = wasm_f32x4_splat(-0.0f); for (; n != 0; n -= 4 * sizeof(float)) { const v128_t vx = wasm_v128_load(input); input += 4; // Convert floating-point value x to integer, with rounding towards zero, and then back to floating-point. // Note: the result is valid only for abs(x) < 2**31, but we further restrict its use to 2**23. const v128_t vrndx = wasm_f32x4_convert_i32x4(wasm_i32x4_trunc_saturate_f32x4(vx)); // Compute bitmask for the bits we want to copy from the rounded x. Other bits will be copied from x. // If abs(x) is below the integral threshold, use all but the sign bit from the rounded x and the sign bit from x. // If x is guaranteed integral or NaN, use all bits from x. const v128_t vrndmask = wasm_v128_andnot(wasm_f32x4_lt(wasm_f32x4_abs(vx), vintegral_threshold), vsign_mask); // Combine x rounded towardz zero via FP->INT->FP conversion and the input x value. // For 0.0 <= x < 2**23, the result is x rounded via FP->INT->FP conversion. // For -2**23 < x <= -0.0, the result is abs(x) rounded via FP->INT->FP conversion with the sign of x. // For abs(x) >= 2**23 or NaN inputs, the result is x itself. const v128_t vy = wasm_v128_bitselect(vrndx, vx, vrndmask); wasm_v128_store(output, vy); output += 4; } }