// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_math_f32_sigmoid__avx_rr2_p5_nr2( size_t n, const float* input, float* output) { assert(n % (8 * sizeof(float)) == 0); // Floating-point mask with only the sign bit set const __m256 vsign_mask = _mm256_set1_ps(-0.0f); // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f); // Last 7 bits are zeroes const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E400p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(-0x1.7F7D1Cp-20f); // Coefficient of polynomial approximation of // exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) on [-log(2)/2, log(2)/2] const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vone = _mm256_set1_ps(1.0f); const __m256 vtwo = _mm256_set1_ps(2.0f); // The smallest x for which sigmoidf(x) is normalized. // This number is also the smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f); for (; n != 0; n -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); // General structure of the algorithm: // // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0. const __m256 vz = _mm256_or_ps(vx, vsign_mask); // Compute reduced argument n := round(z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing // the large number back. The trick with adding large number is valid only within certain bounds // (|z / log(2)| <= 2**22, i.e. |z| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x outside // of [-87.336544, 17.328678] (i.e. z outsize [87.336544, 0]) underflow or saturate sigmoidf(x). We fixup the // result for such inputs at the very end of the algorithm. __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly. const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); // Subtract the large number back to get the final n := round(z / log(2)) as a floating-point number. vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); // Reconstruct the exp(z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); // Denominator of the sigmoid fraction: 1.0 + exp(z) const __m256 vd = _mm256_add_ps(ve, vone); // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z)) __m256 vf = _mm256_mul_ps(ve, vr); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z) vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); input += 8; output += 8; } }