// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include // Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63 extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; void xnn_math_f32_sigmoid__neonfma_rr1_lut64_p2_div( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // Large number such that ulp(magic bias) == exp2(-6) const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p17f); const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p0f); // Mask for the lowest 6 bits const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f); // Coefficient of polynomial approximation of exp(-t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128] const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f); const float32x4_t vone = vmovq_n_f32(1.0f); // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f); for (; n != 0; n -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; // General structure of the algorithm: // // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z / log(2), 6). // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing // the large number back. The trick with adding large number is valid only within certain bounds // (|-z / log(2)| <= 2**16, i.e. |z| <= 0x1.62E43p+15 = 5814540.0), but that is acceptable, because inputs x // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup // the result for such inputs at the very end of the algorithm. float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(-z) is normalized, // i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s // in two steps: // 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(z) is normalized) we have // -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126. // // Shift bits 6:14 into 23:31 (position of floating-point exponent). const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); // Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n). const uint64x2_t vidx = vreinterpretq_u64_s32(vshlq_n_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask), 2)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) vidx_lo)); float32x2_t vl_hi = vld1_dup_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) vidx_hi)); vl_lo = vld1_lane_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) (vidx_lo >> 32)), vl_lo, 1); vl_hi = vld1_lane_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) (vidx_hi >> 32)), vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); // Adjust exponent of the value l fetched from the table to get the final s value. const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); // Subtract the large number back to get the final n := round(-z / log(2), 6) as a floating-point number. vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := (z + n * log(2)). Note that -t = -z - n * log(2). float32x4_t vt = vfmaq_f32(vz, vn, vln2); // Compute degree-2 polynomial approximation for exp(-t) on [-log(2)/128, log(2)/128]. // P(t) = 1 + t * (-1 + t * c2) = 1 - (t - t * (t * c2)) = 1 - p float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); // Reconstruct the exp(-z) value: // e = s * (1 + t * (-1 + t * c2)) // = s * (1 - p) // = s - s * p const float32x4_t vy = vfmsq_f32(vs, vs, vp); // Denominator of the sigmoid fraction: 1.0 + exp(-z) const float32x4_t vd = vaddq_f32(vy, vone); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vdivq_f32(vy, vd); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } }