// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include // Table of exp2(k / 2048) values decremented (as integer) by (k << 12), k = 0..2048 extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_2048[2048]; void xnn_math_f32_sigmoid__scalar_rr2_lut2048_p1_div( size_t n, const float* input, float* output) { assert(n % sizeof(float) == 0); // Large number such that ulp(magic bias) == exp2(-11) const float vmagic_bias = 0x1.800000p12f; const float vminus_log2e = -0x1.715476p0f; // Mask for the lowest 11 bits const uint32_t vindex_mask = UINT32_C(0x7FF); // Last 13 bits are zeroes const float vln2_hi = 0x1.600000p-1f; const float vln2_lo = 0x1.7217F8p-8f; // Coefficient of polynomial approximation of exp(-t) ~ 1 + t * c1 on [-log(2)/2048, log(2)/2048] const float vc1 = -0x1.FFFFFEp-1f; const float vone = 1.0f; // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const float vdenorm_cutoff = 0x1.5D589Ep+6f; for (; n != 0; n -= sizeof(float)) { const float vx = *input++; // General structure of the algorithm: // // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float vz = fabsf(vx); // Compute reduced argument n := round(-z / log(2), 11). // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing // the large number back. The trick with adding large number is valid only within certain bounds // (|-z / log(2)| <= 2**11, i.e. |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup // the result for such inputs at the very end of the algorithm. float vn = vz * vminus_log2e + vmagic_bias; // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(-z) is normalized, // i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s // in two steps: // 1. Fetch 2**frac(n) from the table using the 11 low bits of n, as integer. Note that the fetched values are in // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(z) is normalized) we have // -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126. // // Shift bits 11:19 into 23:31 (position of floating-point exponent). const uint32_t ve = fp32_to_bits(vn) << 12; // Use bits 0:11 of n, as integer, as an index for table lookup of l := 2**frac(n). const uint32_t vidx = fp32_to_bits(vn) & vindex_mask; // Adjust exponent of the value l fetched from the table to get the final s value. const float vs = fp32_from_bits(xnn_table_exp2minus_k_over_2048[vidx] + ve); // Subtract the large number back to get the final n := round(-z / log(2), 11) as a floating-point number. vn -= vmagic_bias; // Compute reduced argument t := (z + n * log(2)). Note that -t = -z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float vt = vn * vln2_hi + vz; vt = vn * vln2_lo + vt; // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]: // P(t) = 1 + t * c1 = 1 + p const float vp = vt * vc1; // Reconstruct the exp(-z) value: // e = s * (1 + t * c1) // = s * (1 + p) // = s + s * p const float vy = vp * vs + vs; // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float vf = vy / (vy + vone); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) { vf = 0.0f; } // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) if XNN_UNPREDICTABLE(vx > 0.0f) { vf = vone - vf; } *output++ = vf; } }