// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include void xnn_math_f32_sigmoid__scalar_rr2_p5_div( size_t n, const float* input, float* output) { assert(n % sizeof(float) == 0); // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. const float vmagic_bias = 0x1.8000FEp23f; const float vminus_log2e = -0x1.715476p+0f; // Last 7 bits are zeroes const float vln2_hi = 0x1.62E400p-1f; const float vln2_lo = 0x1.7F7D1Cp-20f; // Coefficient of polynomial approximation of // exp(-t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) on [-log(2)/2, log(2)/2] const float vc5 = -0x1.0F9F9Cp-7f; const float vc4 = 0x1.573A1Ap-5f; const float vc3 = -0x1.555A80p-3f; const float vc2 = 0x1.FFFDC6p-2f; const float vc1 = -0x1.FFFFF6p-1f; const float vone = 1.0f; // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const float vdenorm_cutoff = 0x1.5D589Ep+6f; for (; n != 0; n -= sizeof(float)) { const float vx = *input++; // General structure of the algorithm: // // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float vz = fabsf(vx); // Compute reduced argument n := round(-z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing // the large number back. The trick with adding large number is valid only within certain bounds // (|-z / log(2)| <= 2**22, i.e. |z| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup // the result for such inputs at the very end of the algorithm. float vn = vz * vminus_log2e + vmagic_bias; // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly. const float vs = fp32_from_bits(fp32_to_bits(vn) << 23); // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number. vn -= vmagic_bias; // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float vt = vn * vln2_hi + vz; vt = vn * vln2_lo + vt; // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]: // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p float vp = vt * vc5 + vc4; vp = vt * vp + vc3; vp = vt * vp + vc2; vp = vt * vp + vc1; // Reconstruct the exp(-z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s * (1 + t * p) // = s + (t * s) * p vt *= vs; const float ve = vt * vp + vs; // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float vf = ve / (ve + vone); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) { vf = 0.0f; } // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) if XNN_UNPREDICTABLE(vx > 0.0f) { vf = vone - vf; } *output++ = vf; } }