// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include void xnn_math_f32_sigmoid__wasmsimd_rr2_p5_div( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f); const v128_t vminus_log2e = wasm_f32x4_splat(-0x1.715476p+0f); // Last 7 bits are zeroes const v128_t vln2_hi = wasm_f32x4_splat(0x1.62E400p-1f); const v128_t vln2_lo = wasm_f32x4_splat(0x1.7F7D1Cp-20f); // Coefficient of polynomial approximation of // exp(-t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) on [-log(2)/2, log(2)/2] const v128_t vc5 = wasm_f32x4_splat(-0x1.0F9F9Cp-7f); const v128_t vc4 = wasm_f32x4_splat( 0x1.573A1Ap-5f); const v128_t vc3 = wasm_f32x4_splat(-0x1.555A80p-3f); const v128_t vc2 = wasm_f32x4_splat( 0x1.FFFDC6p-2f); const v128_t vc1 = wasm_f32x4_splat(-0x1.FFFFF6p-1f); const v128_t vone = wasm_f32x4_splat(1.0f); // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const v128_t vdenorm_cutoff = wasm_f32x4_splat(0x1.5D589Ep+6f); for (; n != 0; n -= 4 * sizeof(float)) { const v128_t vx = wasm_v128_load(input); input += 4; // General structure of the algorithm: // // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const v128_t vz = wasm_f32x4_abs(vx); // Compute reduced argument n := round(-z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing // the large number back. The trick with adding large number is valid only within certain bounds // (|-z / log(2)| <= 2**22, i.e. |z| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup // the result for such inputs at the very end of the algorithm. v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vz, vminus_log2e)); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly. const v128_t vs = wasm_i32x4_shl(vn, 23); // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number. vn = wasm_f32x4_sub(vn, vmagic_bias); // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. v128_t vt = wasm_f32x4_add(vz, wasm_f32x4_mul(vn, vln2_hi)); vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vln2_lo)); // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]: // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vt, vc5)); vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vt, vp)); vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vt, vp)); vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vt, vp)); // Reconstruct the exp(-z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s * (1 + t * p) // = s + (t * s) * p vt = wasm_f32x4_mul(vt, vs); const v128_t ve = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) v128_t vf = wasm_f32x4_div(ve, wasm_f32x4_add(ve, vone)); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = wasm_v128_andnot(vf, wasm_f32x4_gt(vz, vdenorm_cutoff)); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) vf = wasm_v128_bitselect(vf, wasm_f32x4_sub(vone, vf), wasm_i32x4_shr(vx, 31)); wasm_v128_store(output, vf); output += 4; } }