// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class AvgPoolMicrokernelTester { public: enum class Variant { Native, Scalar, }; inline AvgPoolMicrokernelTester& output_pixels(size_t output_pixels) { assert(output_pixels != 0); this->output_pixels_ = output_pixels; return *this; } inline size_t output_pixels() const { return this->output_pixels_; } inline AvgPoolMicrokernelTester& step(size_t step) { assert(step != 0); this->step_ = step; return *this; } inline size_t step() const { return this->step_; } inline AvgPoolMicrokernelTester& input_offset(size_t input_offset) { assert(input_offset != 0); this->input_offset_ = input_offset; return *this; } inline size_t input_offset() const { return this->input_offset_; } inline AvgPoolMicrokernelTester& zero_index(size_t zero_index) { this->zero_index_ = zero_index; return *this; } inline size_t zero_index() const { return this->zero_index_; } inline AvgPoolMicrokernelTester& pooling_elements(size_t pooling_elements) { assert(pooling_elements != 0); this->pooling_elements_ = pooling_elements; return *this; } inline size_t pooling_elements() const { return this->pooling_elements_; } inline size_t packed_pooling_elements() const { if (pooling_elements() <= primary_pooling_tile()) { return primary_pooling_tile(); } else { return (pooling_elements() - primary_pooling_tile()) % incremental_pooling_tile() == 0 ? pooling_elements() : ((pooling_elements() - primary_pooling_tile()) / incremental_pooling_tile() + 1) * incremental_pooling_tile() + primary_pooling_tile(); } } inline AvgPoolMicrokernelTester& pooling_tile(size_t primary_tile, size_t incremental_tile = 0) { assert(primary_tile != 0); this->primary_pooling_tile_ = primary_tile; this->incremental_pooling_tile_ = incremental_tile; return *this; } inline AvgPoolMicrokernelTester& primary_pooling_tile(size_t primary_pooling_tile) { assert(primary_pooling_tile != 0); this->primary_pooling_tile_ = primary_pooling_tile; return *this; } inline size_t primary_pooling_tile() const { return this->primary_pooling_tile_; } inline AvgPoolMicrokernelTester& incremental_pooling_tile(size_t incremental_pooling_tile) { assert(incremental_pooling_tile != 0); this->incremental_pooling_tile_ = incremental_pooling_tile; return *this; } inline size_t incremental_pooling_tile() const { return this->incremental_pooling_tile_; } inline AvgPoolMicrokernelTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline AvgPoolMicrokernelTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return channels(); } else { assert(this->output_stride_ >= channels()); return this->output_stride_; } } inline AvgPoolMicrokernelTester& input_scale(float input_scale) { assert(input_scale > 0.0f); assert(std::isnormal(input_scale)); this->input_scale_ = input_scale; return *this; } inline float input_scale() const { return this->input_scale_; } inline AvgPoolMicrokernelTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline uint8_t input_zero_point() const { return this->input_zero_point_; } inline AvgPoolMicrokernelTester& output_scale(float output_scale) { assert(output_scale > 0.0f); assert(std::isnormal(output_scale)); this->output_scale_ = output_scale; return *this; } inline float output_scale() const { return this->output_scale_; } inline AvgPoolMicrokernelTester& output_zero_point(uint8_t output_zero_point) { this->output_zero_point_ = output_zero_point; return *this; } inline uint8_t output_zero_point() const { return this->output_zero_point_; } inline AvgPoolMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline AvgPoolMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline AvgPoolMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_qu8_avgpool_minmax_unipass_ukernel_function avgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + input_offset() + indirect_input.size() * channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output((output_pixels() - 1) * output_stride() + channels()); std::vector output_ref(output_pixels() * channels()); std::vector output_real(output_pixels() * channels()); std::vector accumulator(output_pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { do { std::generate(input.begin(), input.end(), std::ref(u8rng)); } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); std::fill(input.begin(), input.begin() + input_offset(), 0xA5); std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(uint8_t), input.end(), 0xA5); std::fill(output.begin(), output.end(), 0xA5); for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { indirect_input[i] = input.data() + i * channels(); } std::shuffle(indirect_input.begin(), indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); if (zero_index() != SIZE_MAX) { indirect_input[zero_index()] = zero.data(); } // Prepare parameters. xnn_qu8_avgpool_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(pooling_elements()), input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax()); break; case Variant::Scalar: quantization_params = xnn_init_scalar_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(pooling_elements()), input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax()); break; } const xnn_qu8_avgpool_params scalar_quantization_params = xnn_init_scalar_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(pooling_elements()), input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax()); // Compute reference results. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { int32_t acc = scalar_quantization_params.scalar.bias; for (size_t p = 0; p < pooling_elements(); p++) { const uint8_t* row = indirect_input[x * step() + p]; if (row != zero.data()) { acc += int32_t(row[c + input_offset()]); } } accumulator[x * channels() + c] = acc; output_ref[x * channels() + c] = xnn_qu8_quantize_avgpool(acc, scalar_quantization_params); const float scaled_acc = float(acc) * input_scale() / (output_scale() * float(pooling_elements())) + float(output_zero_point()); output_real[x * channels() + c] = std::min(std::max(scaled_acc, float(qmin())), float(qmax())); } } // Call optimized micro-kernel. avgpool_minmax(output_pixels(), pooling_elements(), channels(), indirect_input.data(), input_offset() * sizeof(uint8_t), zero.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(uint8_t), &quantization_params); // Verify results. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin())) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax())) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_NEAR(float(int32_t(output[x * output_stride() + c])), output_real[x * channels() + c], 0.5f) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c]; ASSERT_EQ(uint32_t(output_ref[x * channels() + c]), uint32_t(output[x * output_stride() + c])) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c]; } } } } void Test(xnn_qu8_avgpool_minmax_multipass_ukernel_function avgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + input_offset() + indirect_input.size() * channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output((output_pixels() - 1) * output_stride() + channels()); std::vector output_ref(output_pixels() * channels()); std::vector output_real(output_pixels() * channels()); std::vector accumulator(output_pixels() * channels()); std::vector> buffer(XNN_EXTRA_BYTES / sizeof(uint8_t) + channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { do { std::generate(input.begin(), input.end(), std::ref(u8rng)); } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); std::fill(input.begin(), input.begin() + input_offset(), 0xA5); std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(uint8_t), input.end(), 0xA5); std::fill(output.begin(), output.end(), 0xA5); for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { indirect_input[i] = input.data() + i * channels(); } std::shuffle(indirect_input.begin(), indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); if (zero_index() != SIZE_MAX) { indirect_input[zero_index()] = zero.data(); } // Prepare parameters. xnn_qu8_avgpool_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(pooling_elements()), input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax()); break; case Variant::Scalar: quantization_params = xnn_init_scalar_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(pooling_elements()), input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax()); break; } const xnn_qu8_avgpool_params scalar_quantization_params = xnn_init_scalar_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(pooling_elements()), input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax()); // Compute reference results. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { int32_t acc = scalar_quantization_params.scalar.bias; for (size_t p = 0; p < pooling_elements(); p++) { const uint8_t* row = indirect_input[x * step() + p]; if (row != zero.data()) { acc += int32_t(row[c + input_offset()]); } } accumulator[x * channels() + c] = acc; output_ref[x * channels() + c] = xnn_qu8_quantize_avgpool(acc, scalar_quantization_params); const float scaled_acc = float(acc) * input_scale() / (output_scale() * float(pooling_elements())) + float(output_zero_point()); output_real[x * channels() + c] = std::min(std::max(scaled_acc, float(qmin())), float(qmax())); } } // Call optimized micro-kernel. avgpool_minmax(output_pixels(), pooling_elements(), channels(), indirect_input.data(), input_offset() * sizeof(uint8_t), zero.data(), buffer.data(), output.data(), (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*), (output_stride() - channels()) * sizeof(uint8_t), &quantization_params); // Verify results. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin())) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax())) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_NEAR(float(int32_t(output[x * output_stride() + c])), output_real[x * channels() + c], 0.5f) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c]; ASSERT_EQ(uint32_t(output_ref[x * channels() + c]), uint32_t(output[x * output_stride() + c])) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c]; } } } } void Test(xnn_f32_avgpool_minmax_unipass_ukernel_function avgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + input_offset() + indirect_input.size() * channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output((output_pixels() - 1) * output_stride() + channels()); std::vector output_ref(output_pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(input.begin(), input.begin() + input_offset(), std::nanf("")); std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf("")); std::fill(output.begin(), output.end(), std::nanf("")); for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { indirect_input[i] = input.data() + i * channels(); } std::shuffle(indirect_input.begin(), indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); if (zero_index() != SIZE_MAX) { indirect_input[zero_index()] = zero.data(); } // Compute reference results, without clamping. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; for (size_t p = 0; p < pooling_elements(); p++) { const float* row = indirect_input[x * step() + p]; if (row != zero.data()) { acc += row[c + input_offset()]; } } output_ref[x * channels() + c] = acc / float(pooling_elements()); } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& output_value : output_ref) { output_value = std::max(std::min(output_value, output_max), output_min); } // Prepare parameters. xnn_f32_scaleminmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_scaleminmax_params( 1.0f / float(pooling_elements()), output_min, output_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_scaleminmax_params( 1.0f / float(pooling_elements()), output_min, output_max); break; } // Call optimized micro-kernel. avgpool_minmax(output_pixels(), pooling_elements(), channels(), indirect_input.data(), input_offset() * sizeof(float), zero.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(float), ¶ms); // Verify results. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(output[x * output_stride() + c], output_min) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_LE(output[x * output_stride() + c], output_max) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_NEAR( output[x * output_stride() + c], output_ref[x * channels() + c], std::abs(output_ref[x * channels() + c]) * 1.0e-6f) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); } } } } void Test(xnn_f32_avgpool_minmax_multipass_ukernel_function avgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + input_offset() + indirect_input.size() * channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output((output_pixels() - 1) * output_stride() + channels()); std::vector output_ref(output_pixels() * channels()); std::vector> buffer(XNN_EXTRA_BYTES / sizeof(float) + channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(input.begin(), input.begin() + input_offset(), std::nanf("")); std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf("")); std::fill(output.begin(), output.end(), std::nanf("")); for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { indirect_input[i] = input.data() + i * channels(); } std::shuffle(indirect_input.begin(), indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); if (zero_index() != SIZE_MAX) { indirect_input[zero_index()] = zero.data(); } // Compute reference results, without clamping. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; for (size_t p = 0; p < pooling_elements(); p++) { const float* row = indirect_input[x * step() + p]; if (row != zero.data()) { acc += row[c + input_offset()]; } } output_ref[x * channels() + c] = acc / float(pooling_elements()); } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& output_value : output_ref) { output_value = std::max(std::min(output_value, output_max), output_min); } // Prepare parameters. xnn_f32_scaleminmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_scaleminmax_params( 1.0f / float(pooling_elements()), output_min, output_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_scaleminmax_params( 1.0f / float(pooling_elements()), output_min, output_max); break; } // Call optimized micro-kernel. avgpool_minmax(output_pixels(), pooling_elements(), channels(), indirect_input.data(), input_offset() * sizeof(float), zero.data(), buffer.data(), output.data(), (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*), (output_stride() - channels()) * sizeof(float), ¶ms); // Verify results. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(output[x * output_stride() + c], output_min) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_LE(output[x * output_stride() + c], output_max) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_NEAR( output[x * output_stride() + c], output_ref[x * channels() + c], std::abs(output_ref[x * channels() + c]) * 1.0e-6f) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); } } } } void Test(xnn_f32_pavgpool_minmax_unipass_ukernel_function pavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32irng = std::bind(std::uniform_real_distribution(), rng); auto f32mrng = std::bind(std::uniform_real_distribution(0.1f, 0.5f), rng); std::vector indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + input_offset() + indirect_input.size() * channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector multiplier(output_pixels()); std::vector output((output_pixels() - 1) * output_stride() + channels()); std::vector output_ref(output_pixels() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32irng)); std::fill(input.begin(), input.begin() + input_offset(), std::nanf("")); std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf("")); std::generate(multiplier.begin(), multiplier.end(), std::ref(f32mrng)); std::fill(output.begin(), output.end(), std::nanf("")); for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { indirect_input[i] = input.data() + i * channels(); } std::shuffle(indirect_input.begin(), indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); if (zero_index() != SIZE_MAX) { indirect_input[zero_index()] = zero.data(); } // Compute reference results, without clamping. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; for (size_t p = 0; p < pooling_elements(); p++) { const float* row = indirect_input[x * step() + p]; if (row != zero.data()) { acc += row[c + input_offset()]; } } output_ref[x * channels() + c] = acc * multiplier[x]; } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& output_value : output_ref) { output_value = std::max(std::min(output_value, output_max), output_min); } // Prepare parameters. xnn_f32_minmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_minmax_params(output_min, output_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_minmax_params(output_min, output_max); break; } // Call optimized micro-kernel. pavgpool_minmax(output_pixels(), pooling_elements(), channels(), indirect_input.data(), input_offset() * sizeof(float), zero.data(), multiplier.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(float), ¶ms); // Verify results. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(output[x * output_stride() + c], output_min) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_LE(output[x * output_stride() + c], output_max) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_NEAR( output[x * output_stride() + c], output_ref[x * channels() + c], std::abs(output_ref[x * channels() + c]) * 1.0e-6f) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); } } } } void Test(xnn_f32_pavgpool_minmax_multipass_ukernel_function pavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32irng = std::bind(std::uniform_real_distribution(), rng); auto f32mrng = std::bind(std::uniform_real_distribution(0.1f, 0.5f), rng); std::vector indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + input_offset() + indirect_input.size() * channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector multiplier(output_pixels()); std::vector output((output_pixels() - 1) * output_stride() + channels()); std::vector output_ref(output_pixels() * channels()); std::vector> buffer(XNN_EXTRA_BYTES / sizeof(float) + channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32irng)); std::fill(input.begin(), input.begin() + input_offset(), std::nanf("")); std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf("")); std::generate(multiplier.begin(), multiplier.end(), std::ref(f32mrng)); std::fill(output.begin(), output.end(), std::nanf("")); for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { indirect_input[i] = input.data() + i * channels(); } std::shuffle(indirect_input.begin(), indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); if (zero_index() != SIZE_MAX) { indirect_input[zero_index()] = zero.data(); } // Compute reference results, without clamping. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; for (size_t p = 0; p < pooling_elements(); p++) { const float* row = indirect_input[x * step() + p]; if (row != zero.data()) { acc += row[c + input_offset()]; } } output_ref[x * channels() + c] = acc * multiplier[x]; } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& output_value : output_ref) { output_value = std::max(std::min(output_value, output_max), output_min); } // Prepare parameters. xnn_f32_minmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_minmax_params(output_min, output_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_minmax_params(output_min, output_max); break; } // Call optimized micro-kernel. pavgpool_minmax(output_pixels(), pooling_elements(), channels(), indirect_input.data(), input_offset() * sizeof(float), zero.data(), multiplier.data(), buffer.data(), output.data(), (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*), (output_stride() - channels()) * sizeof(float), ¶ms); // Verify results. for (size_t x = 0; x < output_pixels(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(output[x * output_stride() + c], output_min) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_LE(output[x * output_stride() + c], output_max) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); ASSERT_NEAR( output[x * output_stride() + c], output_ref[x * channels() + c], std::abs(output_ref[x * channels() + c]) * 1.0e-6f) << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() << ", pooling elements = " << pooling_elements() << ", step = " << step() << ", input offset = " << input_offset(); } } } } private: size_t output_pixels_{1}; size_t pooling_elements_{1}; size_t channels_{1}; size_t input_offset_{0}; size_t zero_index_{SIZE_MAX}; size_t step_{1}; size_t primary_pooling_tile_{1}; size_t incremental_pooling_tile_{1}; size_t output_stride_{0}; float input_scale_{1.25f}; float output_scale_{0.75f}; uint8_t input_zero_point_{121}; uint8_t output_zero_point_{133}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{3}; };