// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include class BinaryElementwiseOperatorTester { public: enum class OperationType { Unknown, Add, Divide, Maximum, Minimum, Multiply, Subtract, SquaredDifference, }; inline BinaryElementwiseOperatorTester& input1_shape(std::initializer_list input1_shape) { assert(input1_shape.size() <= XNN_MAX_TENSOR_DIMS); this->input1_shape_ = std::vector(input1_shape); return *this; } inline const std::vector& input1_shape() const { return this->input1_shape_; } inline size_t input1_dim(size_t i) const { return i < num_input1_dims() ? this->input1_shape_[i] : 1; } inline size_t num_input1_dims() const { return this->input1_shape_.size(); } inline size_t num_input1_elements() const { return std::accumulate( this->input1_shape_.begin(), this->input1_shape_.end(), size_t(1), std::multiplies()); } inline BinaryElementwiseOperatorTester& input1_zero_point(int16_t input1_zero_point) { this->input1_zero_point_ = input1_zero_point; return *this; } inline int16_t input1_zero_point() const { return this->input1_zero_point_; } inline BinaryElementwiseOperatorTester& input1_scale(float input1_scale) { assert(std::isfinite(input1_scale)); this->input1_scale_ = input1_scale; return *this; } inline float input1_scale() const { return this->input1_scale_; } inline BinaryElementwiseOperatorTester& input2_shape(std::initializer_list input2_shape) { assert(input2_shape.size() <= XNN_MAX_TENSOR_DIMS); this->input2_shape_ = std::vector(input2_shape); return *this; } inline const std::vector& input2_shape() const { return this->input2_shape_; } inline size_t input2_dim(size_t i) const { return i < num_input2_dims() ? this->input2_shape_[i] : 1; } inline size_t num_input2_dims() const { return this->input2_shape_.size(); } inline size_t num_input2_elements() const { return std::accumulate( this->input2_shape_.begin(), this->input2_shape_.end(), size_t(1), std::multiplies()); } inline BinaryElementwiseOperatorTester& input2_zero_point(int16_t input2_zero_point) { this->input2_zero_point_ = input2_zero_point; return *this; } inline int16_t input2_zero_point() const { return this->input2_zero_point_; } inline BinaryElementwiseOperatorTester& input2_scale(float input2_scale) { assert(std::isfinite(input2_scale)); this->input2_scale_ = input2_scale; return *this; } inline float input2_scale() const { return this->input2_scale_; } inline BinaryElementwiseOperatorTester& output_zero_point(int16_t output_zero_point) { this->output_zero_point_ = output_zero_point; return *this; } inline int16_t output_zero_point() const { return this->output_zero_point_; } inline BinaryElementwiseOperatorTester& output_scale(float output_scale) { assert(std::isfinite(output_scale)); this->output_scale_ = output_scale; return *this; } inline float output_scale() const { return this->output_scale_; } inline BinaryElementwiseOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline BinaryElementwiseOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline BinaryElementwiseOperatorTester& operation_type(OperationType operation_type) { this->operation_type_ = operation_type; return *this; } inline OperationType operation_type() const { return this->operation_type_; } inline BinaryElementwiseOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } float Compute(float a, float b) const { switch (operation_type()) { case OperationType::Add: return a + b; case OperationType::Divide: return a / b; case OperationType::Maximum: return std::max(a, b); case OperationType::Minimum: return std::min(a, b); case OperationType::Multiply: return a * b; case OperationType::Subtract: return a - b; case OperationType::SquaredDifference: return (a - b) * (a - b); default: return std::nanf(""); } } void TestQS8() const { ASSERT_NE(operation_type(), OperationType::Unknown); ASSERT_GE(input1_zero_point(), std::numeric_limits::min()); ASSERT_LE(input1_zero_point(), std::numeric_limits::max()); ASSERT_GE(input2_zero_point(), std::numeric_limits::min()); ASSERT_LE(input2_zero_point(), std::numeric_limits::max()); ASSERT_GE(output_zero_point(), std::numeric_limits::min()); ASSERT_LE(output_zero_point(), std::numeric_limits::max()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), std::ref(rng)); // Compute generalized shapes. std::array input1_dims; std::array input2_dims; std::array output_dims; std::fill(input1_dims.begin(), input1_dims.end(), 1); std::fill(input2_dims.begin(), input2_dims.end(), 1); std::fill(output_dims.begin(), output_dims.end(), 1); std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims()); std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims()); for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) { if (input1_dims[i] != 1 && input2_dims[i] != 1) { ASSERT_EQ(input1_dims[i], input2_dims[i]); } output_dims[i] = std::max(input1_dims[i], input2_dims[i]); } const size_t num_output_elements = std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies()); // Compute generalized strides. std::array input1_strides; std::array input2_strides; std::array output_strides; size_t input1_stride = 1, input2_stride = 1, output_stride = 1; for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) { input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride; input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride; output_strides[i - 1] = output_stride; input1_stride *= input1_dims[i - 1]; input2_stride *= input2_dims[i - 1]; output_stride *= output_dims[i - 1]; } std::vector input1(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input1_elements()); std::vector input2(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input2_elements()); std::vector output(num_output_elements); std::vector output_ref(num_output_elements); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input1.begin(), input1.end(), std::ref(i8rng)); std::generate(input2.begin(), input2.end(), std::ref(i8rng)); std::fill(output.begin(), output.end(), 0xAA); // Compute reference results. for (size_t i = 0; i < output_dims[0]; i++) { for (size_t j = 0; j < output_dims[1]; j++) { for (size_t k = 0; k < output_dims[2]; k++) { for (size_t l = 0; l < output_dims[3]; l++) { for (size_t m = 0; m < output_dims[4]; m++) { for (size_t n = 0; n < output_dims[5]; n++) { output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute( input1_scale() * (int32_t(input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]]) - input1_zero_point()), input2_scale() * (int32_t(input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]) - input2_zero_point())) / output_scale() + float(output_zero_point()); } } } } } } for (float& output_value : output_ref) { output_value = std::min(std::max(output_value, float(int8_t(qmin() - 0x80))), float(int8_t(qmax() - 0x80))); } // Create, setup, run, and destroy a binary elementwise operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t binary_elementwise_op = nullptr; xnn_status status = xnn_status_unsupported_parameter; switch (operation_type()) { case OperationType::Add: status = xnn_create_add_nd_qs8( input1_zero_point(), input1_scale(), input2_zero_point(), input2_scale(), output_zero_point(), output_scale(), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), 0, &binary_elementwise_op); break; default: FAIL() << "Unsupported operation type"; } if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, binary_elementwise_op); // Smart pointer to automatically delete binary_elementwise_op. std::unique_ptr auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator); switch (operation_type()) { case OperationType::Add: ASSERT_EQ(xnn_status_success, xnn_setup_add_nd_qs8( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; default: FAIL() << "Unsupported operation type"; } ASSERT_EQ(xnn_status_success, xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < output_dims[0]; i++) { for (size_t j = 0; j < output_dims[1]; j++) { for (size_t k = 0; k < output_dims[2]; k++) { for (size_t l = 0; l < output_dims[3]; l++) { for (size_t m = 0; m < output_dims[4]; m++) { for (size_t n = 0; n < output_dims[5]; n++) { const size_t index = i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]; ASSERT_NEAR(float(output[index]), output_ref[index], 0.6f) << "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")" << ", input1 zero point = " << input1_zero_point() << ", input1 scale = " << input1_scale() << ", input2 zero point = " << input2_zero_point() << ", input2 scale = " << input2_scale() << ", output zero point = " << output_zero_point() << ", output scale = " << output_scale(); } } } } } } } } void TestF16() const { ASSERT_NE(operation_type(), OperationType::Unknown); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); // Compute generalized shapes. std::array input1_dims; std::array input2_dims; std::array output_dims; std::fill(input1_dims.begin(), input1_dims.end(), 1); std::fill(input2_dims.begin(), input2_dims.end(), 1); std::fill(output_dims.begin(), output_dims.end(), 1); std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims()); std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims()); for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) { if (input1_dims[i] != 1 && input2_dims[i] != 1) { ASSERT_EQ(input1_dims[i], input2_dims[i]); } output_dims[i] = std::max(input1_dims[i], input2_dims[i]); } const size_t num_output_elements = std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies()); // Compute generalized strides. std::array input1_strides; std::array input2_strides; std::array output_strides; size_t input1_stride = 1, input2_stride = 1, output_stride = 1; for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) { input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride; input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride; output_strides[i - 1] = output_stride; input1_stride *= input1_dims[i - 1]; input2_stride *= input2_dims[i - 1]; output_stride *= output_dims[i - 1]; } std::vector input1(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input1_elements()); std::vector input2(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input2_elements()); std::vector output(num_output_elements); std::vector output_ref(num_output_elements); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input1.begin(), input1.end(), std::ref(f16rng)); std::generate(input2.begin(), input2.end(), std::ref(f16rng)); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results. for (size_t i = 0; i < output_dims[0]; i++) { for (size_t j = 0; j < output_dims[1]; j++) { for (size_t k = 0; k < output_dims[2]; k++) { for (size_t l = 0; l < output_dims[3]; l++) { for (size_t m = 0; m < output_dims[4]; m++) { for (size_t n = 0; n < output_dims[5]; n++) { output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute( fp16_ieee_to_fp32_value(input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]]), fp16_ieee_to_fp32_value(input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]])); } } } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); const float output_min = scaled_min == scaled_max ? -std::numeric_limits::infinity() : scaled_min; const float output_max = scaled_min == scaled_max ? +std::numeric_limits::infinity() : scaled_max; for (float& output_value : output_ref) { output_value = std::min(std::max(output_value, output_min), output_max); } // Create, setup, run, and destroy a binary elementwise operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t binary_elementwise_op = nullptr; xnn_status status = xnn_status_unsupported_parameter; switch (operation_type()) { case OperationType::Add: status = xnn_create_add_nd_f16(output_min, output_max, 0, &binary_elementwise_op); break; case OperationType::Multiply: status = xnn_create_multiply_nd_f16(output_min, output_max, 0, &binary_elementwise_op); break; default: FAIL() << "Unsupported operation type"; } if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, binary_elementwise_op); // Smart pointer to automatically delete binary_elementwise_op. std::unique_ptr auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator); switch (operation_type()) { case OperationType::Add: ASSERT_EQ(xnn_status_success, xnn_setup_add_nd_f16( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; case OperationType::Multiply: ASSERT_EQ(xnn_status_success, xnn_setup_multiply_nd_f16( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; default: FAIL() << "Unsupported operation type"; } ASSERT_EQ(xnn_status_success, xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < output_dims[0]; i++) { for (size_t j = 0; j < output_dims[1]; j++) { for (size_t k = 0; k < output_dims[2]; k++) { for (size_t l = 0; l < output_dims[3]; l++) { for (size_t m = 0; m < output_dims[4]; m++) { for (size_t n = 0; n < output_dims[5]; n++) { const size_t index = i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]; ASSERT_NEAR(fp16_ieee_to_fp32_value(output[index]), output_ref[index], std::max(1.0e-4f, std::abs(output_ref[index]) * 1.0e-2f)) << "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")"; } } } } } } } } void TestF32() const { ASSERT_NE(operation_type(), OperationType::Unknown); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.01f, 1.0f), rng); // Compute generalized shapes. std::array input1_dims; std::array input2_dims; std::array output_dims; std::fill(input1_dims.begin(), input1_dims.end(), 1); std::fill(input2_dims.begin(), input2_dims.end(), 1); std::fill(output_dims.begin(), output_dims.end(), 1); std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims()); std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims()); for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) { if (input1_dims[i] != 1 && input2_dims[i] != 1) { ASSERT_EQ(input1_dims[i], input2_dims[i]); } output_dims[i] = std::max(input1_dims[i], input2_dims[i]); } const size_t num_output_elements = std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies()); // Compute generalized strides. std::array input1_strides; std::array input2_strides; std::array output_strides; size_t input1_stride = 1, input2_stride = 1, output_stride = 1; for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) { input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride; input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride; output_strides[i - 1] = output_stride; input1_stride *= input1_dims[i - 1]; input2_stride *= input2_dims[i - 1]; output_stride *= output_dims[i - 1]; } std::vector input1(XNN_EXTRA_BYTES / sizeof(float) + num_input1_elements()); std::vector input2(XNN_EXTRA_BYTES / sizeof(float) + num_input2_elements()); std::vector output(num_output_elements); std::vector output_ref(num_output_elements); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input1.begin(), input1.end(), std::ref(f32rng)); std::generate(input2.begin(), input2.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); // Compute reference results. for (size_t i = 0; i < output_dims[0]; i++) { for (size_t j = 0; j < output_dims[1]; j++) { for (size_t k = 0; k < output_dims[2]; k++) { for (size_t l = 0; l < output_dims[3]; l++) { for (size_t m = 0; m < output_dims[4]; m++) { for (size_t n = 0; n < output_dims[5]; n++) { output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute( input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]], input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]); } } } } } } const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = num_output_elements == 1 ? -std::numeric_limits::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin()); const float output_max = num_output_elements == 1 ? +std::numeric_limits::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); for (float& output_value : output_ref) { output_value = std::min(std::max(output_value, output_min), output_max); } // Create, setup, run, and destroy a binary elementwise operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t binary_elementwise_op = nullptr; switch (operation_type()) { case OperationType::Add: ASSERT_EQ(xnn_status_success, xnn_create_add_nd_f32( output_min, output_max, 0, &binary_elementwise_op)); break; case OperationType::Divide: ASSERT_EQ(xnn_status_success, xnn_create_divide_nd_f32( output_min, output_max, 0, &binary_elementwise_op)); break; case OperationType::Maximum: ASSERT_EQ(xnn_status_success, xnn_create_maximum_nd_f32( 0, &binary_elementwise_op)); break; case OperationType::Minimum: ASSERT_EQ(xnn_status_success, xnn_create_minimum_nd_f32( 0, &binary_elementwise_op)); break; case OperationType::Multiply: ASSERT_EQ(xnn_status_success, xnn_create_multiply_nd_f32( output_min, output_max, 0, &binary_elementwise_op)); break; case OperationType::Subtract: ASSERT_EQ(xnn_status_success, xnn_create_subtract_nd_f32( output_min, output_max, 0, &binary_elementwise_op)); break; case OperationType::SquaredDifference: ASSERT_EQ(xnn_status_success, xnn_create_squared_difference_nd_f32( 0, &binary_elementwise_op)); break; default: FAIL() << "Unsupported operation type"; } ASSERT_NE(nullptr, binary_elementwise_op); // Smart pointer to automatically delete binary_elementwise_op. std::unique_ptr auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator); switch (operation_type()) { case OperationType::Add: ASSERT_EQ(xnn_status_success, xnn_setup_add_nd_f32( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; case OperationType::Divide: ASSERT_EQ(xnn_status_success, xnn_setup_divide_nd_f32( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; case OperationType::Maximum: ASSERT_EQ(xnn_status_success, xnn_setup_maximum_nd_f32( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; case OperationType::Minimum: ASSERT_EQ(xnn_status_success, xnn_setup_minimum_nd_f32( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; case OperationType::Multiply: ASSERT_EQ(xnn_status_success, xnn_setup_multiply_nd_f32( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; case OperationType::Subtract: ASSERT_EQ(xnn_status_success, xnn_setup_subtract_nd_f32( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; case OperationType::SquaredDifference: ASSERT_EQ(xnn_status_success, xnn_setup_squared_difference_nd_f32( binary_elementwise_op, num_input1_dims(), input1_shape().data(), num_input2_dims(), input2_shape().data(), input1.data(), input2.data(), output.data(), nullptr /* thread pool */)); break; default: FAIL() << "Unsupported operation type"; } ASSERT_EQ(xnn_status_success, xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < output_dims[0]; i++) { for (size_t j = 0; j < output_dims[1]; j++) { for (size_t k = 0; k < output_dims[2]; k++) { for (size_t l = 0; l < output_dims[3]; l++) { for (size_t m = 0; m < output_dims[4]; m++) { for (size_t n = 0; n < output_dims[5]; n++) { const size_t index = i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]; ASSERT_NEAR(output[index], output_ref[index], 1.0e-6f * std::abs(output_ref[index])) << "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")"; } } } } } } } } private: std::vector input1_shape_; std::vector input2_shape_; int16_t input1_zero_point_{0}; float input1_scale_{1.0f}; int16_t input2_zero_point_{0}; float input2_scale_{1.0f}; int16_t output_zero_point_{0}; float output_scale_{1.0f}; uint8_t qmin_{0}; uint8_t qmax_{255}; OperationType operation_type_{OperationType::Unknown}; size_t iterations_{3}; };