// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class ConvHWCMicrokernelTester { public: enum class Variant { Native, Scalar, }; inline ConvHWCMicrokernelTester& output_channels_tile(uint32_t output_channels_tile) { this->output_channels_tile_ = output_channels_tile; return *this; } inline uint32_t output_channels_tile() const { return this->output_channels_tile_; } inline ConvHWCMicrokernelTester& padding(uint32_t padding) { this->padding_top_ = padding; this->padding_right_ = padding; this->padding_bottom_ = padding; this->padding_left_ = padding; return *this; } inline ConvHWCMicrokernelTester& padding_height(uint32_t padding_height) { this->padding_top_ = padding_height; this->padding_bottom_ = padding_height; return *this; } inline ConvHWCMicrokernelTester& padding_width(uint32_t padding_width) { this->padding_right_ = padding_width; this->padding_left_ = padding_width; return *this; } inline ConvHWCMicrokernelTester& padding_top(uint32_t padding_top) { this->padding_top_ = padding_top; return *this; } inline uint32_t padding_top() const { return this->padding_top_; } inline ConvHWCMicrokernelTester& padding_right(uint32_t padding_right) { this->padding_right_ = padding_right; return *this; } inline uint32_t padding_right() const { return this->padding_right_; } inline ConvHWCMicrokernelTester& padding_bottom(uint32_t padding_bottom) { this->padding_bottom_ = padding_bottom; return *this; } inline uint32_t padding_bottom() const { return this->padding_bottom_; } inline ConvHWCMicrokernelTester& padding_left(uint32_t padding_left) { this->padding_left_ = padding_left; return *this; } inline uint32_t padding_left() const { return this->padding_left_; } inline ConvHWCMicrokernelTester& input_size(uint32_t input_height, uint32_t input_width) { assert(input_height >= 1); assert(input_width >= 1); this->input_height_ = input_height; this->input_width_ = input_width; return *this; } inline ConvHWCMicrokernelTester& input_height(uint32_t input_height) { assert(input_height >= 1); this->input_height_ = input_height; return *this; } inline uint32_t input_height() const { return this->input_height_; } inline ConvHWCMicrokernelTester& input_width(uint32_t input_width) { assert(input_width >= 1); this->input_width_ = input_width; return *this; } inline uint32_t input_width() const { return this->input_width_; } inline ConvHWCMicrokernelTester& input_channels(size_t input_channels) { assert(input_channels >= 1); this->input_channels_ = input_channels; return *this; } inline size_t input_channels() const { return this->input_channels_; } inline ConvHWCMicrokernelTester& output_channels(size_t output_channels) { assert(output_channels >= 1); this->output_channels_ = output_channels; return *this; } inline size_t output_channels() const { return this->output_channels_; } inline size_t packed_output_channels() const { return output_channels() % output_channels_tile() == 0 ? output_channels() : output_channels() / output_channels_tile() * output_channels_tile() + output_channels_tile(); } inline ConvHWCMicrokernelTester& batch_size(size_t batch_size) { assert(batch_size >= 1); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline ConvHWCMicrokernelTester& kernel_size(uint32_t kernel_size) { assert(kernel_size >= 1); this->kernel_height_ = kernel_size; this->kernel_width_ = kernel_size; return *this; } inline ConvHWCMicrokernelTester& kernel_height(uint32_t kernel_height) { assert(kernel_height >= 1); this->kernel_height_ = kernel_height; return *this; } inline uint32_t kernel_height() const { return this->kernel_height_; } inline ConvHWCMicrokernelTester& kernel_width(uint32_t kernel_width) { assert(kernel_width >= 1); this->kernel_width_ = kernel_width; return *this; } inline uint32_t kernel_width() const { return this->kernel_width_; } inline ConvHWCMicrokernelTester& subsampling(uint32_t subsampling) { assert(subsampling >= 1); this->subsampling_height_ = subsampling; this->subsampling_width_ = subsampling; return *this; } inline ConvHWCMicrokernelTester& subsampling_height(uint32_t subsampling_height) { assert(subsampling_height >= 1); this->subsampling_height_ = subsampling_height; return *this; } inline uint32_t subsampling_height() const { return this->subsampling_height_; } inline ConvHWCMicrokernelTester& subsampling_width(uint32_t subsampling_width) { assert(subsampling_width >= 1); this->subsampling_width_ = subsampling_width; return *this; } inline uint32_t subsampling_width() const { return this->subsampling_width_; } inline ConvHWCMicrokernelTester& output_y_start(uint32_t output_y_start) { this->output_y_start_ = output_y_start; return *this; } inline uint32_t output_y_start() const { return this->output_y_start_; } inline ConvHWCMicrokernelTester& output_y_end(uint32_t output_y_end) { this->output_y_end_ = output_y_end; return *this; } inline uint32_t output_y_end() const { if (this->output_y_end_ == std::numeric_limits::max()) { return output_height(); } else { return this->output_y_end_; } } inline size_t input_pixel_stride() const { return input_channels(); } inline size_t output_pixel_stride() const { return output_channels(); } inline size_t output_height() const { const size_t padded_input_height = padding_top() + input_height() + padding_bottom(); return (std::max(padded_input_height + subsampling_height(), kernel_height()) - kernel_height()) / subsampling_height(); } inline size_t output_width() const { const size_t padded_input_width = padding_left() + input_width() + padding_right(); return (std::max(padded_input_width + subsampling_width(), kernel_width()) - kernel_width()) / subsampling_width(); } inline ConvHWCMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline ConvHWCMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline ConvHWCMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_f32_conv_hwc_ukernel_function conv, Variant variant = Variant::Native) const { ASSERT_LT(output_y_start(), output_height()); ASSERT_LE(output_y_end(), output_height()); ASSERT_GT(output_y_end(), output_y_start()); ASSERT_GE(output_width(), 1); ASSERT_GE(output_height(), 1); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.1f, 1.0f), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + batch_size() * ((input_height() * input_width() - 1) * input_pixel_stride() + input_channels())); std::vector zero(XNN_EXTRA_BYTES / sizeof(float) + input_width() * input_channels()); std::vector kernel(output_channels() * kernel_height() * kernel_width() * input_channels()); std::vector bias(output_channels()); std::vector output(batch_size() * ((output_height() * output_width() - 1) * output_pixel_stride() + output_channels())); std::vector output_ref(batch_size() * output_height() * output_width() * output_channels()); std::vector> packed_weights((input_channels() * kernel_height() * kernel_width() + 1) * packed_output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); xnn_pack_f32_dconv_oki_w( output_channels(), input_channels(), output_channels_tile(), kernel_height(), kernel_width(), kernel.data(), bias.data(), packed_weights.data(), nullptr); // Compute reference results, without clamping. for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t oc = 0; oc < output_channels(); oc++) { float acc = bias[oc]; for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx - padding_left(); if (ix < input_width()) { for (size_t ic = 0; ic < input_channels(); ic++) { acc += input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + ic] * kernel[((oc * kernel_height() + ky) * kernel_width() + kx) * input_channels() + ic]; } } } } } output_ref[((i * output_height() + oy) * output_width() + ox) * output_channels() + oc] = acc; } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Prepare parameters. xnn_f32_minmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_minmax_params(output_min, output_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_minmax_params(output_min, output_max); break; } // Call optimized micro-kernel. conv( input_height(), input_width(), output_y_start(), output_y_end(), input.data(), zero.data(), packed_weights.data(), output.data(), padding_top(), output_channels(), output_pixel_stride() * output_width() * sizeof(float), output_pixel_stride() * sizeof(float), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = output_y_start(); y < output_y_end(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < output_channels(); c++) { ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min) << "(x, y) = (" << x << ", " << y << "), channel = " << c; ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max) << "(x, y) = (" << x << ", " << y << "), channel = " << c; ASSERT_NEAR( output_ref[((i * output_height() + y) * output_width() + x) * output_channels() + c], output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], 1.0e-4 * std::abs(output_ref[((i * output_height() + y) * output_width() + x) * output_channels() + c])) << "(x, y) = (" << x << ", " << y << "), channel = " << c; } } } } } } private: uint32_t padding_top_{0}; uint32_t padding_right_{0}; uint32_t padding_bottom_{0}; uint32_t padding_left_{0}; size_t input_height_{1}; size_t input_width_{1}; size_t input_channels_{1}; size_t output_channels_{1}; uint32_t output_channels_tile_{1}; size_t batch_size_{1}; uint32_t kernel_height_{1}; uint32_t kernel_width_{1}; uint32_t subsampling_height_{1}; uint32_t subsampling_width_{1}; uint32_t output_y_start_{0}; uint32_t output_y_end_{std::numeric_limits::max()}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{1}; };