// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include class DepthToSpaceOperatorTester { public: inline DepthToSpaceOperatorTester& input_size(size_t input_height, size_t input_width) { assert(input_height >= 1); assert(input_width >= 1); this->input_height_ = input_height; this->input_width_ = input_width; return *this; } inline DepthToSpaceOperatorTester& input_height(size_t input_height) { assert(input_height >= 1); this->input_height_ = input_height; return *this; } inline size_t input_height() const { return this->input_height_; } inline DepthToSpaceOperatorTester& input_width(size_t input_width) { assert(input_width >= 1); this->input_width_ = input_width; return *this; } inline size_t input_width() const { return this->input_width_; } inline size_t output_height() const { return input_height() * block_size(); } inline size_t output_width() const { return input_width() * block_size(); } inline DepthToSpaceOperatorTester& block_size(size_t block_size) { assert(block_size >= 2); this->block_size_ = block_size; return *this; } inline size_t block_size() const { return this->block_size_; } inline size_t input_channels() const { return output_channels() * block_size() * block_size(); } inline DepthToSpaceOperatorTester& output_channels(size_t output_channels) { assert(output_channels != 0); this->output_channels_ = output_channels; return *this; } inline size_t output_channels() const { return this->output_channels_; } inline DepthToSpaceOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline DepthToSpaceOperatorTester& input_channels_stride(size_t input_channels_stride) { assert(input_channels_stride >= 1); this->input_channels_stride_ = input_channels_stride; return *this; } inline size_t input_channels_stride() const { if (this->input_channels_stride_ == 0) { return input_channels(); } else { assert(this->input_channels_stride_ >= input_channels()); return this->input_channels_stride_; } } inline DepthToSpaceOperatorTester& output_channels_stride(size_t output_channels_stride) { assert(output_channels_stride >= 1); this->output_channels_stride_ = output_channels_stride; return *this; } inline size_t output_channels_stride() const { if (this->output_channels_stride_ == 0) { return output_channels(); } else { assert(this->output_channels_stride_ >= output_channels()); return this->output_channels_stride_; } } inline DepthToSpaceOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestNHWCxX32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(), rng); std::vector input( (batch_size() * input_height() * input_width() - 1) * input_channels_stride() + input_channels()); std::vector output( (batch_size() * output_height() * output_width() - 1) * output_channels_stride() + output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), INT32_C(0xDEADBEAF)); // Create, setup, run, and destroy Depth To Space operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t depth_to_space_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_depth_to_space_nhwc_x32( output_channels(), input_channels_stride(), output_channels_stride(), block_size(), 0, &depth_to_space_op)); ASSERT_NE(nullptr, depth_to_space_op); // Smart pointer to automatically delete depth_to_space_op. std::unique_ptr auto_depth_to_space_op(depth_to_space_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_depth_to_space_nhwc_x32( depth_to_space_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(depth_to_space_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t iy = 0; iy < input_height(); iy++) { for (size_t by = 0; by < block_size(); by++) { for (size_t ix = 0; ix < input_width(); ix++) { for (size_t bx = 0; bx < block_size(); bx++) { for (size_t oc = 0; oc < output_channels(); oc++) { const size_t input_index = ((i * input_height() + iy) * input_width() + ix) * input_channels_stride() + (by * block_size() + bx) * output_channels() + oc; const size_t output_index = ((i * output_height() + iy * block_size() + by) * output_width() + ix * block_size() + bx) * output_channels_stride() + oc; ASSERT_EQ(output[output_index], input[input_index]) << "batch: " << i << " / " << batch_size() << ", input x: " << ix << " / " << input_width() << ", input y: " << iy << " / " << input_height() << ", block x: " << bx << " / " << block_size() << ", block y: " << by << " / " << block_size() << ", output channel: " << oc << " / " << output_channels() << ", input stride: " << input_channels_stride() << ", output stride: " << output_channels_stride(); } } } } } } } } void TestNCHW2NHWCxX32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint32_t) + ((batch_size() - 1) * input_channels_stride() + input_channels()) * input_height() * input_width()); std::vector output( (batch_size() * output_height() * output_width() - 1) * output_channels_stride() + output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), INT32_C(0xDEADBEAF)); // Create, setup, run, and destroy Depth To Space operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t depth_to_space_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_depth_to_space_nchw2nhwc_x32( output_channels(), input_channels_stride(), output_channels_stride(), block_size(), 0, &depth_to_space_op)); ASSERT_NE(nullptr, depth_to_space_op); // Smart pointer to automatically delete depth_to_space_op. std::unique_ptr auto_depth_to_space_op(depth_to_space_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_depth_to_space_nchw2nhwc_x32( depth_to_space_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(depth_to_space_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t iy = 0; iy < input_height(); iy++) { for (size_t by = 0; by < block_size(); by++) { for (size_t ix = 0; ix < input_width(); ix++) { for (size_t bx = 0; bx < block_size(); bx++) { for (size_t oc = 0; oc < output_channels(); oc++) { const size_t input_index = i * input_channels_stride() * input_height() * input_width() + (((by * block_size() + bx) * output_channels() + oc) * input_height() + iy) * input_width() + ix; const size_t output_index = ((i * output_height() + iy * block_size() + by) * output_width() + ix * block_size() + bx) * output_channels_stride() + oc; ASSERT_EQ(output[output_index], input[input_index]) << "batch: " << i << " / " << batch_size() << ", input x: " << ix << " / " << input_width() << ", input y: " << iy << " / " << input_height() << ", block x: " << bx << " / " << block_size() << ", block y: " << by << " / " << block_size() << ", output channel: " << oc << " / " << output_channels() << ", input stride: " << input_channels_stride() << ", output stride: " << output_channels_stride(); } } } } } } } } private: size_t input_height_{1}; size_t input_width_{1}; size_t output_channels_{1}; size_t block_size_{2}; size_t batch_size_{1}; size_t input_channels_stride_{0}; size_t output_channels_stride_{0}; size_t iterations_{1}; };