// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include class FullyConnectedOperatorTester { public: inline FullyConnectedOperatorTester& input_channels(size_t input_channels) { assert(input_channels >= 1); this->input_channels_ = input_channels; return *this; } inline size_t input_channels() const { return this->input_channels_; } inline FullyConnectedOperatorTester& output_channels(size_t output_channels) { assert(output_channels >= 1); this->output_channels_ = output_channels; return *this; } inline size_t output_channels() const { return this->output_channels_; } inline FullyConnectedOperatorTester& batch_size(size_t batch_size) { assert(batch_size >= 1); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline FullyConnectedOperatorTester& input_stride(size_t input_stride) { assert(input_stride >= 1); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return input_channels(); } else { assert(this->input_stride_ >= input_channels()); return this->input_stride_; } } inline FullyConnectedOperatorTester& output_stride(size_t output_stride) { assert(output_stride >= 1); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return output_channels(); } else { assert(this->output_stride_ >= output_channels()); return this->output_stride_; } } inline FullyConnectedOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline FullyConnectedOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline FullyConnectedOperatorTester& transpose_weights(bool transpose_weights) { this->transpose_weights_ = transpose_weights; return *this; } inline bool transpose_weights() const { return this->transpose_weights_; } inline FullyConnectedOperatorTester& has_bias(bool has_bias) { this->has_bias_ = has_bias; return *this; } inline bool has_bias() const { return this->has_bias_; } inline FullyConnectedOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + (batch_size() - 1) * input_stride() + input_channels()); std::vector kernel(output_channels() * input_channels()); std::vector bias(output_channels()); std::vector output((batch_size() - 1) * output_stride() + output_channels()); std::vector accumulators(batch_size() * output_channels()); std::vector output_ref(batch_size() * output_channels()); const uint8_t input_zero_point = 127; const uint8_t kernel_zero_point = 127; for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::generate(kernel.begin(), kernel.end(), std::ref(u8rng)); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results, without renormalization. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oc = 0; oc < output_channels(); oc++) { accumulators[i * output_channels() + oc] = bias[oc]; } } } else { std::fill(accumulators.begin(), accumulators.end(), 0); } if (transpose_weights()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oc = 0; oc < output_channels(); oc++) { for (size_t ic = 0; ic < input_channels(); ic++) { accumulators[i * output_channels() + oc] += (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[ic * output_channels() + oc]) - int32_t(kernel_zero_point)); } } } } else { for (size_t i = 0; i < batch_size(); i++) { for (size_t oc = 0; oc < output_channels(); oc++) { for (size_t ic = 0; ic < input_channels(); ic++) { accumulators[i * output_channels() + oc] += (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[oc * input_channels() + ic]) - int32_t(kernel_zero_point)); } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max(std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Renormalize reference results. std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point); }); // Create, setup, run, and destroy Fully Connected operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t fully_connected_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_fully_connected_nc_qu8( input_channels(), output_channels(), input_stride(), output_stride(), input_zero_point, 1.0f /* input scale */, kernel_zero_point, 1.0f /* kernel scale */, kernel.data(), has_bias() ? bias.data() : nullptr, output_zero_point, output_scale, qmin(), qmax(), transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0, &fully_connected_op)); // Smart pointer to automatically delete fully_connected_op. std::unique_ptr auto_fully_connected_op(fully_connected_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_fully_connected_nc_qu8( fully_connected_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(fully_connected_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < output_channels(); c++) { ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax())) << "batch index = " << i << ", channel = " << c; ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin())) << "batch index = " << i << ", channel = " << c; ASSERT_NEAR( output_ref[i * output_channels() + c], double(output[i * output_stride() + c]) - double(output_zero_point), 0.9) << "batch index = " << i << ", channel = " << c; } } } } void TestF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.1f, 1.0f), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + (batch_size() - 1) * input_stride() + input_channels()); std::vector kernel(output_channels() * input_channels()); std::vector bias(output_channels()); std::vector output((batch_size() - 1) * output_stride() + output_channels()); std::vector output_ref(batch_size() * output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); // Compute reference results, without renormalization. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oc = 0; oc < output_channels(); oc++) { output_ref[i * output_channels() + oc] = bias[oc]; } } } else { std::fill(output_ref.begin(), output_ref.end(), 0.0f); } if (transpose_weights()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oc = 0; oc < output_channels(); oc++) { for (size_t ic = 0; ic < input_channels(); ic++) { output_ref[i * output_channels() + oc] += input[i * input_stride() + ic] * kernel[ic * output_channels() + oc]; } } } } else { for (size_t i = 0; i < batch_size(); i++) { for (size_t oc = 0; oc < output_channels(); oc++) { for (size_t ic = 0; ic < input_channels(); ic++) { output_ref[i * output_channels() + oc] += input[i * input_stride() + ic] * kernel[oc * input_channels() + ic]; } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = qmin() == 0 ? -std::numeric_limits::infinity() : accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = qmax() == 255 ? std::numeric_limits::infinity() : accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Fully Connected operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t fully_connected_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_fully_connected_nc_f32( input_channels(), output_channels(), input_stride(), output_stride(), kernel.data(), has_bias() ? bias.data() : nullptr, output_min, output_max, transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0, &fully_connected_op)); // Smart pointer to automatically delete fully_connected_op. std::unique_ptr auto_fully_connected_op(fully_connected_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_fully_connected_nc_f32( fully_connected_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(fully_connected_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < output_channels(); c++) { ASSERT_LE(output[i * output_stride() + c], output_max) << "batch index = " << i << ", channel = " << c; ASSERT_GE(output[i * output_stride() + c], output_min) << "batch index = " << i << ", channel = " << c; ASSERT_NEAR( output_ref[i * output_channels() + c], output[i * output_stride() + c], 1.0e-4 * std::abs(output_ref[i * output_channels() + c])) << "batch index = " << i << ", channel = " << c; } } } } private: size_t input_channels_{1}; size_t input_stride_{0}; size_t output_channels_{1}; size_t output_stride_{0}; size_t batch_size_{1}; uint8_t qmin_{0}; uint8_t qmax_{255}; bool transpose_weights_{false}; bool has_bias_{true}; size_t iterations_{1}; };