// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class GAvgPoolMicrokernelTester { public: enum class Variant { Native, Scalar, }; inline GAvgPoolMicrokernelTester& rows(size_t rows) { assert(rows != 0); this->rows_ = rows; return *this; } inline size_t rows() const { return this->rows_; } inline GAvgPoolMicrokernelTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline GAvgPoolMicrokernelTester& channel_tile(size_t channel_tile) { assert(channel_tile != 0); this->channel_tile_ = channel_tile; return *this; } inline size_t channel_tile() const { return this->channel_tile_; } inline GAvgPoolMicrokernelTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return channels(); } else { assert(this->input_stride_ >= channels()); return this->input_stride_; } } inline GAvgPoolMicrokernelTester& input_scale(float input_scale) { assert(input_scale > 0.0f); assert(std::isnormal(input_scale)); this->input_scale_ = input_scale; return *this; } inline float input_scale() const { return this->input_scale_; } inline GAvgPoolMicrokernelTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline uint8_t input_zero_point() const { return this->input_zero_point_; } inline GAvgPoolMicrokernelTester& output_scale(float output_scale) { assert(output_scale > 0.0f); assert(std::isnormal(output_scale)); this->output_scale_ = output_scale; return *this; } inline float output_scale() const { return this->output_scale_; } inline GAvgPoolMicrokernelTester& output_zero_point(uint8_t output_zero_point) { this->output_zero_point_ = output_zero_point; return *this; } inline uint8_t output_zero_point() const { return this->output_zero_point_; } inline GAvgPoolMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline GAvgPoolMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline GAvgPoolMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_qu8_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + (rows() - 1) * input_stride() + channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output(channels()); std::vector output_ref(channels()); std::vector output_fp(channels()); std::vector accumulators(channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); // Prepare parameters. union xnn_qu8_avgpool_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), output_zero_point(), qmin(), qmax()); break; case Variant::Scalar: quantization_params = xnn_init_scalar_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), output_zero_point(), qmin(), qmax()); break; } const union xnn_qu8_avgpool_params scalar_quantization_params = xnn_init_scalar_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), output_zero_point(), qmin(), qmax()); // Compute reference results. for (size_t c = 0; c < channels(); c++) { int32_t acc = scalar_quantization_params.scalar.bias; for (size_t n = 0; n < rows(); n++) { acc += input[n * input_stride() + c]; } accumulators[c] = acc; output_ref[c] = xnn_qu8_quantize_avgpool(acc, scalar_quantization_params); output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point()); output_fp[c] = std::min(output_fp[c], float(qmax())); output_fp[c] = std::max(output_fp[c], float(qmin())); } // Call optimized micro-kernel. gavgpool_minmax(rows(), channels(), input.data(), input_stride() * sizeof(uint8_t), zero.data(), output.data(), &quantization_params); // Verify results. for (size_t c = 0; c < channels(); c++) { ASSERT_LE(uint32_t(output[c]), uint32_t(qmax())) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_GE(uint32_t(output[c]), uint32_t(qmin())) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f) << "at position " << c << ", rows = " << rows() << ", channels = " << channels() << ", acc = " << accumulators[c]; ASSERT_EQ(uint32_t(output_ref[c]), uint32_t(output[c])) << "at position " << c << ", rows = " << rows() << ", channels = " << channels() << ", acc = " << accumulators[c]; } } } void Test(xnn_qu8_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + (rows() - 1) * input_stride() + channels()); std::vector> buffer(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output(channels()); std::vector output_ref(channels()); std::vector output_fp(channels()); std::vector accumulators(channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); // Prepare parameters. union xnn_qu8_avgpool_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), output_zero_point(), qmin(), qmax()); break; case Variant::Scalar: quantization_params = xnn_init_scalar_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), output_zero_point(), qmin(), qmax()); break; } const union xnn_qu8_avgpool_params scalar_quantization_params = xnn_init_scalar_qu8_avgpool_params( -int32_t(input_zero_point()) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), output_zero_point(), qmin(), qmax()); // Compute reference results. for (size_t c = 0; c < channels(); c++) { int32_t acc = scalar_quantization_params.scalar.bias; for (size_t n = 0; n < rows(); n++) { acc += input[n * input_stride() + c]; } accumulators[c] = acc; output_ref[c] = xnn_qu8_quantize_avgpool(acc, scalar_quantization_params); output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point()); output_fp[c] = std::min(output_fp[c], float(qmax())); output_fp[c] = std::max(output_fp[c], float(qmin())); } // Call optimized micro-kernel. gavgpool_minmax(rows(), channels(), input.data(), input_stride() * sizeof(uint8_t), zero.data(), buffer.data(), output.data(), &quantization_params); // Verify results. for (size_t c = 0; c < channels(); c++) { ASSERT_LE(uint32_t(output[c]), uint32_t(qmax())) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_GE(uint32_t(output[c]), uint32_t(qmin())) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f) << "at position " << c << ", rows = " << rows() << ", channels = " << channels() << ", acc = " << accumulators[c]; ASSERT_EQ(uint32_t(output_ref[c]), uint32_t(output[c])) << "at position " << c << ", rows = " << rows() << ", channels = " << channels() << ", acc = " << accumulators[c]; } } } void Test(xnn_qs8_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(int8_t) + (rows() - 1) * input_stride() + channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector output(channels()); std::vector output_ref(channels()); std::vector output_fp(channels()); std::vector accumulators(channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i8rng)); std::fill(output.begin(), output.end(), 0xA5); // Prepare parameters. union xnn_qs8_avgpool_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_qs8_avgpool_params( -int32_t(input_zero_point() - 0x80) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); break; case Variant::Scalar: quantization_params = xnn_init_scalar_qs8_avgpool_params( -int32_t(input_zero_point() - 0x80) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); break; } const union xnn_qs8_avgpool_params scalar_quantization_params = xnn_init_scalar_qs8_avgpool_params( -int32_t(input_zero_point() - 0x80) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); // Compute reference results. for (size_t c = 0; c < channels(); c++) { int32_t acc = scalar_quantization_params.scalar.bias; for (size_t n = 0; n < rows(); n++) { acc += input[n * input_stride() + c]; } accumulators[c] = acc; output_ref[c] = xnn_qs8_quantize_avgpool(acc, scalar_quantization_params); output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point() - 0x80); output_fp[c] = std::min(output_fp[c], float(qmax() - 0x80)); output_fp[c] = std::max(output_fp[c], float(qmin() - 0x80)); } // Call optimized micro-kernel. gavgpool_minmax(rows(), channels(), input.data(), input_stride() * sizeof(int8_t), zero.data(), output.data(), &quantization_params); // Verify results. for (size_t c = 0; c < channels(); c++) { ASSERT_LE(int32_t(output[c]), int32_t(qmax() - 0x80)) << "at channel " << c << " / " << channels() << ", rows = " << rows(); ASSERT_GE(int32_t(output[c]), int32_t(qmin() - 0x80)) << "at channel " << c << " / " << channels() << ", rows = " << rows(); ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f) << "at channel " << c << " / " << channels() << ", rows = " << rows() << ", accumulator = " << accumulators[c]; ASSERT_EQ(int32_t(output_ref[c]), int32_t(output[c])) << "at channel " << c << " / " << channels() << ", rows = " << rows() << ", accumulator = " << accumulators[c]; } } } void Test(xnn_qs8_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(int8_t) + (rows() - 1) * input_stride() + channels()); std::vector> buffer(channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector output(channels()); std::vector output_ref(channels()); std::vector output_fp(channels()); std::vector accumulators(channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i8rng)); std::fill(output.begin(), output.end(), 0xA5); // Prepare parameters. union xnn_qs8_avgpool_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_qs8_avgpool_params( -int32_t(input_zero_point() - 0x80) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); break; case Variant::Scalar: quantization_params = xnn_init_scalar_qs8_avgpool_params( -int32_t(input_zero_point() - 0x80) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); break; } const union xnn_qs8_avgpool_params scalar_quantization_params = xnn_init_scalar_qs8_avgpool_params( -int32_t(input_zero_point() - 0x80) * int32_t(rows()), input_scale() / (output_scale() * float(rows())), int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); // Compute reference results. for (size_t c = 0; c < channels(); c++) { int32_t acc = scalar_quantization_params.scalar.bias; for (size_t n = 0; n < rows(); n++) { acc += input[n * input_stride() + c]; } accumulators[c] = acc; output_ref[c] = xnn_qs8_quantize_avgpool(acc, scalar_quantization_params); output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point() - 0x80); output_fp[c] = std::min(output_fp[c], float(qmax() - 0x80)); output_fp[c] = std::max(output_fp[c], float(qmin() - 0x80)); } // Call optimized micro-kernel. gavgpool_minmax(rows(), channels(), input.data(), input_stride() * sizeof(int8_t), zero.data(), buffer.data(), output.data(), &quantization_params); // Verify results. for (size_t c = 0; c < channels(); c++) { ASSERT_LE(int32_t(output[c]), int32_t(qmax() - 0x80)) << "at channel " << c << " / " << channels() << ", rows = " << rows(); ASSERT_GE(int32_t(output[c]), int32_t(qmin() - 0x80)) << "at channel " << c << " / " << channels() << ", rows = " << rows(); ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f) << "at channel " << c << " / " << channels() << ", rows = " << rows() << ", accumulator = " << accumulators[c]; ASSERT_EQ(int32_t(output_ref[c]), int32_t(output[c])) << "at channel " << c << " / " << channels() << ", rows = " << rows() << ", accumulator = " << accumulators[c]; } } } void Test(xnn_f16_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector output(channels()); std::vector output_ref(channels()); std::fill(zero.begin(), zero.end(), 0); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f16rng)); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results, without clamping. for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; for (size_t n = 0; n < rows(); n++) { acc += fp16_ieee_to_fp32_value(input[n * input_stride() + c]); } output_ref[c] = acc / float(rows()); } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + float(qmin()) / 255.0f * accumulated_range)); const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range)); // Clamp reference results. for (float& output_values : output_ref) { output_values = std::max(std::min(output_values, output_max), output_min); } // Prepare parameters. xnn_f16_scaleminmax_params params = xnn_init_f16_scaleminmax_params( fp16_ieee_from_fp32_value(1.0f / float(rows())), fp16_ieee_from_fp32_value(output_min), fp16_ieee_from_fp32_value(output_max)); // Call optimized micro-kernel. gavgpool_minmax(rows(), channels(), input.data(), input_stride() * sizeof(uint16_t), zero.data(), output.data(), ¶ms); // Verify results. for (size_t c = 0; c < channels(); c++) { ASSERT_LE(fp16_ieee_to_fp32_value(output[c]), output_max) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_GE(fp16_ieee_to_fp32_value(output[c]), output_min) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_NEAR(fp16_ieee_to_fp32_value(output[c]), output_ref[c], std::max(1.0e-4f, std::abs(output_ref[c]) * 1.0e-2f)) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); } } } void Test(xnn_f16_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector> buffer(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector output(channels()); std::vector output_ref(channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f16rng)); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results, without clamping. for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; for (size_t n = 0; n < rows(); n++) { acc += fp16_ieee_to_fp32_value(input[n * input_stride() + c]); } output_ref[c] = acc / float(rows()); } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + float(qmin()) / 255.0f * accumulated_range)); const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range)); // Prepare parameters. xnn_f16_scaleminmax_params params = xnn_init_f16_scaleminmax_params( fp16_ieee_from_fp32_value(1.0f / float(rows())), fp16_ieee_from_fp32_value(output_min), fp16_ieee_from_fp32_value(output_max)); // Clamp reference results. for (float& output_values : output_ref) { output_values = std::max(std::min(output_values, output_max), output_min); } // Call optimized micro-kernel. gavgpool_minmax(rows(), channels(), input.data(), input_stride() * sizeof(uint16_t), zero.data(), buffer.data(), output.data(), ¶ms); // Verify results. for (size_t c = 0; c < channels(); c++) { ASSERT_LE(fp16_ieee_to_fp32_value(output[c]), output_max) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_GE(fp16_ieee_to_fp32_value(output[c]), output_min) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_NEAR(fp16_ieee_to_fp32_value(output[c]), output_ref[c], std::abs(output_ref[c]) * 1.0e-0f) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); } } } void Test(xnn_f32_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output(channels()); std::vector output_ref(channels()); std::fill(zero.begin(), zero.end(), 0.0f); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results, without clamping. for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; for (size_t n = 0; n < rows(); n++) { acc += input[n * input_stride() + c]; } output_ref[c] = acc / float(rows()); } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& output_values : output_ref) { output_values = std::max(std::min(output_values, output_max), output_min); } // Prepare parameters. union xnn_f32_scaleminmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_scaleminmax_params( 1.0f / float(rows()), output_min, output_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_scaleminmax_params( 1.0f / float(rows()), output_min, output_max); break; } // Call optimized micro-kernel. gavgpool_minmax(rows(), channels(), input.data(), input_stride() * sizeof(float), zero.data(), output.data(), ¶ms); // Verify results. for (size_t c = 0; c < channels(); c++) { ASSERT_LE(output[c], output_max) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_GE(output[c], output_min) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); } } } void Test(xnn_f32_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector> buffer(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output(channels()); std::vector output_ref(channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results, without clamping. for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; for (size_t n = 0; n < rows(); n++) { acc += input[n * input_stride() + c]; } output_ref[c] = acc / float(rows()); } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Prepare parameters. union xnn_f32_scaleminmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_scaleminmax_params( 1.0f / float(rows()), output_min, output_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_scaleminmax_params( 1.0f / float(rows()), output_min, output_max); break; } // Clamp reference results. for (float& output_values : output_ref) { output_values = std::max(std::min(output_values, output_max), output_min); } // Call optimized micro-kernel. gavgpool_minmax(rows(), channels(), input.data(), input_stride() * sizeof(float), zero.data(), buffer.data(), output.data(), ¶ms); // Verify results. for (size_t c = 0; c < channels(); c++) { ASSERT_LE(output[c], output_max) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_GE(output[c], output_min) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); ASSERT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f) << "at position " << c << ", rows = " << rows() << ", channels = " << channels(); } } } private: size_t rows_{1}; size_t channels_{1}; size_t channel_tile_{1}; size_t input_stride_{0}; float input_scale_{1.25f}; float output_scale_{0.75f}; uint8_t input_zero_point_{121}; uint8_t output_zero_point_{133}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{15}; };