// // Copyright 2019 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // FrameCapture.cpp: // ANGLE Frame capture implementation. // #include "libANGLE/capture/FrameCapture.h" #include #include #include #include #include "sys/stat.h" #include "common/angle_version.h" #include "common/mathutil.h" #include "common/string_utils.h" #include "common/system_utils.h" #include "libANGLE/Config.h" #include "libANGLE/Context.h" #include "libANGLE/Display.h" #include "libANGLE/Fence.h" #include "libANGLE/Framebuffer.h" #include "libANGLE/GLES1Renderer.h" #include "libANGLE/Query.h" #include "libANGLE/ResourceMap.h" #include "libANGLE/Shader.h" #include "libANGLE/Surface.h" #include "libANGLE/VertexArray.h" #include "libANGLE/capture/capture_gles_1_0_autogen.h" #include "libANGLE/capture/capture_gles_2_0_autogen.h" #include "libANGLE/capture/capture_gles_3_0_autogen.h" #include "libANGLE/capture/capture_gles_3_1_autogen.h" #include "libANGLE/capture/capture_gles_3_2_autogen.h" #include "libANGLE/capture/capture_gles_ext_autogen.h" #include "libANGLE/capture/frame_capture_utils.h" #include "libANGLE/capture/gl_enum_utils.h" #include "libANGLE/queryconversions.h" #include "libANGLE/queryutils.h" #define USE_SYSTEM_ZLIB #include "compression_utils_portable.h" #if !ANGLE_CAPTURE_ENABLED # error Frame capture must be enabled to include this file. #endif // !ANGLE_CAPTURE_ENABLED namespace angle { namespace { constexpr char kEnabledVarName[] = "ANGLE_CAPTURE_ENABLED"; constexpr char kOutDirectoryVarName[] = "ANGLE_CAPTURE_OUT_DIR"; constexpr char kFrameStartVarName[] = "ANGLE_CAPTURE_FRAME_START"; constexpr char kFrameEndVarName[] = "ANGLE_CAPTURE_FRAME_END"; constexpr char kCaptureTriggerVarName[] = "ANGLE_CAPTURE_TRIGGER"; constexpr char kCaptureLabel[] = "ANGLE_CAPTURE_LABEL"; constexpr char kCompression[] = "ANGLE_CAPTURE_COMPRESSION"; constexpr char kSerializeStateEnabledVarName[] = "ANGLE_CAPTURE_SERIALIZE_STATE"; constexpr size_t kBinaryAlignment = 16; constexpr size_t kFunctionSizeLimit = 5000; // Limit based on MSVC Compiler Error C2026 constexpr size_t kStringLengthLimit = 16380; // Android debug properties that correspond to the above environment variables constexpr char kAndroidCaptureEnabled[] = "debug.angle.capture.enabled"; constexpr char kAndroidOutDir[] = "debug.angle.capture.out_dir"; constexpr char kAndroidFrameStart[] = "debug.angle.capture.frame_start"; constexpr char kAndroidFrameEnd[] = "debug.angle.capture.frame_end"; constexpr char kAndroidCaptureTrigger[] = "debug.angle.capture.trigger"; constexpr char kAndroidCaptureLabel[] = "debug.angle.capture.label"; constexpr char kAndroidCompression[] = "debug.angle.capture.compression"; std::string GetDefaultOutDirectory() { #if defined(ANGLE_PLATFORM_ANDROID) std::string path = "/sdcard/Android/data/"; // Linux interface to get application id of the running process FILE *cmdline = fopen("/proc/self/cmdline", "r"); char applicationId[512]; if (cmdline) { fread(applicationId, 1, sizeof(applicationId), cmdline); fclose(cmdline); // Some package may have application id as : char *colonSep = strchr(applicationId, ':'); if (colonSep) { *colonSep = '\0'; } } else { ERR() << "not able to lookup application id"; } constexpr char kAndroidOutputSubdir[] = "/angle_capture/"; path += std::string(applicationId) + kAndroidOutputSubdir; // Check for existance of output path struct stat dir_stat; if (stat(path.c_str(), &dir_stat) == -1) { ERR() << "Output directory '" << path << "' does not exist. Create it over adb using mkdir."; } return path; #else return std::string("./"); #endif // defined(ANGLE_PLATFORM_ANDROID) } std::string GetCaptureTrigger() { return GetEnvironmentVarOrUnCachedAndroidProperty(kCaptureTriggerVarName, kAndroidCaptureTrigger); } std::ostream &operator<<(std::ostream &os, gl::ContextID contextId) { os << static_cast(contextId.value); return os; } constexpr static gl::ContextID kSharedContextId = {0}; struct FmtCapturePrefix { FmtCapturePrefix(gl::ContextID contextIdIn, const std::string &captureLabelIn) : contextId(contextIdIn), captureLabel(captureLabelIn) {} gl::ContextID contextId; const std::string &captureLabel; }; std::ostream &operator<<(std::ostream &os, const FmtCapturePrefix &fmt) { if (fmt.captureLabel.empty()) { os << "angle"; } else { os << fmt.captureLabel; } if (fmt.contextId != kSharedContextId) { os << "_capture_context" << fmt.contextId; } return os; } enum class ReplayFunc { Replay, Setup, Reset, }; constexpr uint32_t kNoPartId = std::numeric_limits::max(); struct FmtReplayFunction { FmtReplayFunction(gl::ContextID contextIdIn, uint32_t frameIndexIn, uint32_t partIdIn = kNoPartId) : contextId(contextIdIn), frameIndex(frameIndexIn), partId(partIdIn) {} gl::ContextID contextId; uint32_t frameIndex; uint32_t partId; }; std::ostream &operator<<(std::ostream &os, const FmtReplayFunction &fmt) { os << "ReplayContext"; if (fmt.contextId == kSharedContextId) { os << "Shared"; } else { os << fmt.contextId; } os << "Frame" << fmt.frameIndex; if (fmt.partId != kNoPartId) { os << "Part" << fmt.partId; } os << "()"; return os; } struct FmtSetupFunction { FmtSetupFunction(uint32_t partIdIn, gl::ContextID contextIdIn) : partId(partIdIn), contextId(contextIdIn) {} uint32_t partId; gl::ContextID contextId; }; std::ostream &operator<<(std::ostream &os, const FmtSetupFunction &fmt) { os << "SetupReplayContext"; if (fmt.contextId == kSharedContextId) { os << "Shared"; } else { os << fmt.contextId; } if (fmt.partId != kNoPartId) { os << "Part" << fmt.partId; } os << "()"; return os; } struct FmtResetFunction { FmtResetFunction() {} }; std::ostream &operator<<(std::ostream &os, const FmtResetFunction &fmt) { os << "ResetReplay()"; return os; } struct FmtFunction { FmtFunction(ReplayFunc funcTypeIn, gl::ContextID contextIdIn, uint32_t frameIndexIn, uint32_t partIdIn) : funcType(funcTypeIn), contextId(contextIdIn), frameIndex(frameIndexIn), partId(partIdIn) {} ReplayFunc funcType; gl::ContextID contextId; uint32_t frameIndex; uint32_t partId; }; std::ostream &operator<<(std::ostream &os, const FmtFunction &fmt) { switch (fmt.funcType) { case ReplayFunc::Replay: os << FmtReplayFunction(fmt.contextId, fmt.frameIndex, fmt.partId); break; case ReplayFunc::Setup: os << FmtSetupFunction(fmt.partId, fmt.contextId); break; case ReplayFunc::Reset: os << FmtResetFunction(); break; default: UNREACHABLE(); break; } return os; } struct FmtGetSerializedContextStateFunction { FmtGetSerializedContextStateFunction(gl::ContextID contextIdIn, uint32_t frameIndexIn) : contextId(contextIdIn), frameIndex(frameIndexIn) {} gl::ContextID contextId; uint32_t frameIndex; }; std::ostream &operator<<(std::ostream &os, const FmtGetSerializedContextStateFunction &fmt) { os << "GetSerializedContext" << fmt.contextId << "StateFrame" << fmt.frameIndex << "Data()"; return os; } std::string GetCaptureFileName(gl::ContextID contextId, const std::string &captureLabel, uint32_t frameIndex, const char *suffix) { std::stringstream fnameStream; fnameStream << FmtCapturePrefix(contextId, captureLabel) << "_frame" << std::setfill('0') << std::setw(3) << frameIndex << suffix; return fnameStream.str(); } std::string GetCaptureFilePath(const std::string &outDir, gl::ContextID contextId, const std::string &captureLabel, uint32_t frameIndex, const char *suffix) { return outDir + GetCaptureFileName(contextId, captureLabel, frameIndex, suffix); } void WriteParamStaticVarName(const CallCapture &call, const ParamCapture ¶m, int counter, std::ostream &out) { out << call.name() << "_" << param.name << "_" << counter; } void WriteGLFloatValue(std::ostream &out, GLfloat value) { // Check for non-representable values ASSERT(std::numeric_limits::has_infinity); ASSERT(std::numeric_limits::has_quiet_NaN); if (std::isinf(value)) { float negativeInf = -std::numeric_limits::infinity(); if (value == negativeInf) { out << "-"; } out << "std::numeric_limits::infinity()"; } else if (std::isnan(value)) { out << "std::numeric_limits::quiet_NaN()"; } else { out << std::setprecision(16); out << value; } } template void WriteInlineData(const std::vector &vec, std::ostream &out) { const T *data = reinterpret_cast(vec.data()); size_t count = vec.size() / sizeof(T); if (data == nullptr) { return; } out << static_cast(data[0]); for (size_t dataIndex = 1; dataIndex < count; ++dataIndex) { out << ", " << static_cast(data[dataIndex]); } } template <> void WriteInlineData(const std::vector &vec, std::ostream &out) { const GLchar *data = reinterpret_cast(vec.data()); size_t count = vec.size() / sizeof(GLchar); if (data == nullptr || data[0] == '\0') { return; } out << "\""; for (size_t dataIndex = 0; dataIndex < count; ++dataIndex) { if (data[dataIndex] == '\0') break; out << static_cast(data[dataIndex]); } out << "\""; } void WriteStringParamReplay(std::ostream &out, const ParamCapture ¶m) { const std::vector &data = param.data[0]; // null terminate C style string ASSERT(data.size() > 0 && data.back() == '\0'); std::string str(data.begin(), data.end() - 1); out << "\"" << str << "\""; } void WriteStringPointerParamReplay(DataTracker *dataTracker, std::ostream &out, std::ostream &header, const CallCapture &call, const ParamCapture ¶m) { // Concatenate the strings to ensure we get an accurate counter std::vector strings; for (const std::vector &data : param.data) { // null terminate C style string ASSERT(data.size() > 0 && data.back() == '\0'); strings.emplace_back(data.begin(), data.end() - 1); } int counter = dataTracker->getStringCounters().getStringCounter(strings); if (counter == kStringsNotFound) { // This is a unique set of strings, so set up their declaration and update the counter counter = dataTracker->getCounters().getAndIncrement(call.entryPoint, param.name); dataTracker->getStringCounters().setStringCounter(strings, counter); header << "const char* const "; WriteParamStaticVarName(call, param, counter, header); header << "[] = { \n"; for (const std::string &str : strings) { // Break up long strings for MSVC size_t copyLength = 0; std::string separator; for (size_t i = 0; i < str.length(); i += kStringLengthLimit) { if ((str.length() - i) <= kStringLengthLimit) { copyLength = str.length() - i; separator = ","; } else { copyLength = kStringLengthLimit; separator = ""; } header << " R\"(" << str.substr(i, copyLength) << ")\"" << separator << "\n"; } } header << " };\n"; } ASSERT(counter >= 0); WriteParamStaticVarName(call, param, counter, out); } template void WriteResourceIDPointerParamReplay(DataTracker *dataTracker, std::ostream &out, std::ostream &header, const CallCapture &call, const ParamCapture ¶m) { int counter = dataTracker->getCounters().getAndIncrement(call.entryPoint, param.name); header << "const GLuint "; WriteParamStaticVarName(call, param, counter, header); header << "[] = { "; const ResourceIDType resourceIDType = GetResourceIDTypeFromParamType(param.type); ASSERT(resourceIDType != ResourceIDType::InvalidEnum); const char *name = GetResourceIDTypeName(resourceIDType); ASSERT(param.dataNElements > 0); ASSERT(param.data.size() == 1); const ParamT *returnedIDs = reinterpret_cast(param.data[0].data()); for (GLsizei resIndex = 0; resIndex < param.dataNElements; ++resIndex) { ParamT id = returnedIDs[resIndex]; if (resIndex > 0) { header << ", "; } header << "g" << name << "Map[" << id.value << "]"; } header << " };\n "; WriteParamStaticVarName(call, param, counter, out); } void WriteBinaryParamReplay(DataTracker *dataTracker, std::ostream &out, std::ostream &header, const CallCapture &call, const ParamCapture ¶m, std::vector *binaryData) { int counter = dataTracker->getCounters().getAndIncrement(call.entryPoint, param.name); ASSERT(param.data.size() == 1); const std::vector &data = param.data[0]; ParamType overrideType = param.type; if (param.type == ParamType::TGLvoidConstPointer || param.type == ParamType::TvoidConstPointer) { overrideType = ParamType::TGLubyteConstPointer; } if (overrideType == ParamType::TGLenumConstPointer || overrideType == ParamType::TGLcharPointer) { // Inline if data are of type string or enum std::string paramTypeString = ParamTypeToString(param.type); header << paramTypeString.substr(0, paramTypeString.length() - 1); WriteParamStaticVarName(call, param, counter, header); header << "[] = { "; if (overrideType == ParamType::TGLenumConstPointer) { WriteInlineData(data, header); } else { ASSERT(overrideType == ParamType::TGLcharPointer); WriteInlineData(data, header); } header << " };\n"; WriteParamStaticVarName(call, param, counter, out); } else { // Store in binary file if data are not of type string or enum // Round up to 16-byte boundary for cross ABI safety size_t offset = rx::roundUpPow2(binaryData->size(), kBinaryAlignment); binaryData->resize(offset + data.size()); memcpy(binaryData->data() + offset, data.data(), data.size()); out << "reinterpret_cast<" << ParamTypeToString(overrideType) << ">(&gBinaryData[" << offset << "])"; } } uintptr_t SyncIndexValue(GLsync sync) { return reinterpret_cast(sync); } void WriteCppReplayForCall(const CallCapture &call, DataTracker *dataTracker, std::ostream &out, std::ostream &header, std::vector *binaryData) { std::ostringstream callOut; if (call.entryPoint == EntryPoint::GLCreateShader || call.entryPoint == EntryPoint::GLCreateProgram || call.entryPoint == EntryPoint::GLCreateShaderProgramv) { GLuint id = call.params.getReturnValue().value.GLuintVal; callOut << "gShaderProgramMap[" << id << "] = "; } if (call.entryPoint == EntryPoint::GLFenceSync) { GLsync sync = call.params.getReturnValue().value.GLsyncVal; callOut << "gSyncMap[" << SyncIndexValue(sync) << "] = "; } // Depending on how a buffer is mapped, we may need to track its location for readback bool trackBufferPointer = false; if (call.entryPoint == EntryPoint::GLMapBufferRange || call.entryPoint == EntryPoint::GLMapBufferRangeEXT) { GLbitfield access = call.params.getParam("access", ParamType::TGLbitfield, 3).value.GLbitfieldVal; trackBufferPointer = access & GL_MAP_WRITE_BIT; } if (call.entryPoint == EntryPoint::GLMapBuffer || call.entryPoint == EntryPoint::GLMapBufferOES) { GLenum access = call.params.getParam("access", ParamType::TGLenum, 1).value.GLenumVal; trackBufferPointer = access == GL_WRITE_ONLY_OES || access == GL_WRITE_ONLY || access == GL_READ_WRITE; } if (trackBufferPointer) { // Track the returned pointer so we update its data when unmapped gl::BufferID bufferID = call.params.getMappedBufferID(); callOut << "gMappedBufferData["; WriteParamValueReplay(callOut, call, bufferID); callOut << "] = "; } callOut << call.name() << "("; bool first = true; for (const ParamCapture ¶m : call.params.getParamCaptures()) { if (!first) { callOut << ", "; } if (param.arrayClientPointerIndex != -1 && param.value.voidConstPointerVal != nullptr) { callOut << "gClientArrays[" << param.arrayClientPointerIndex << "]"; } else if (param.readBufferSizeBytes > 0) { callOut << "reinterpret_cast<" << ParamTypeToString(param.type) << ">(gReadBuffer)"; } else if (param.data.empty()) { if (param.type == ParamType::TGLenum) { OutputGLenumString(callOut, param.enumGroup, param.value.GLenumVal); } else if (param.type == ParamType::TGLbitfield) { OutputGLbitfieldString(callOut, param.enumGroup, param.value.GLbitfieldVal); } else if (param.type == ParamType::TGLfloat) { WriteGLFloatValue(callOut, param.value.GLfloatVal); } else if (param.type == ParamType::TGLsync) { callOut << "gSyncMap[" << SyncIndexValue(param.value.GLsyncVal) << "]"; } else if (param.type == ParamType::TGLuint64 && param.name == "timeout") { if (param.value.GLuint64Val == GL_TIMEOUT_IGNORED) { callOut << "GL_TIMEOUT_IGNORED"; } else { WriteParamCaptureReplay(callOut, call, param); } } else { WriteParamCaptureReplay(callOut, call, param); } } else { switch (param.type) { case ParamType::TGLcharConstPointer: WriteStringParamReplay(callOut, param); break; case ParamType::TGLcharConstPointerPointer: WriteStringPointerParamReplay(dataTracker, callOut, header, call, param); break; case ParamType::TBufferIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TFenceNVIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TFramebufferIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TMemoryObjectIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TProgramPipelineIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TQueryIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TRenderbufferIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TSamplerIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TSemaphoreIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TTextureIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TTransformFeedbackIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; case ParamType::TVertexArrayIDConstPointer: WriteResourceIDPointerParamReplay(dataTracker, callOut, out, call, param); break; default: WriteBinaryParamReplay(dataTracker, callOut, header, call, param, binaryData); break; } } first = false; } callOut << ")"; out << callOut.str(); } size_t MaxClientArraySize(const gl::AttribArray &clientArraySizes) { size_t found = 0; for (size_t size : clientArraySizes) { if (size > found) { found = size; } } return found; } struct SaveFileHelper { public: // We always use ios::binary to avoid inconsistent line endings when captured on Linux vs Win. SaveFileHelper(const std::string &filePathIn) : mOfs(filePathIn, std::ios::binary | std::ios::out), mFilePath(filePathIn) { if (!mOfs.is_open()) { FATAL() << "Could not open " << filePathIn; } } ~SaveFileHelper() { printf("Saved '%s'.\n", mFilePath.c_str()); } template SaveFileHelper &operator<<(const T &value) { mOfs << value; if (mOfs.bad()) { FATAL() << "Error writing to " << mFilePath; } return *this; } void write(const uint8_t *data, size_t size) { mOfs.write(reinterpret_cast(data), size); } private: std::ofstream mOfs; std::string mFilePath; }; std::string GetBinaryDataFilePath(bool compression, gl::ContextID contextId, const std::string &captureLabel) { std::stringstream fnameStream; fnameStream << FmtCapturePrefix(contextId, captureLabel) << ".angledata"; if (compression) { fnameStream << ".gz"; } return fnameStream.str(); } void SaveBinaryData(bool compression, const std::string &outDir, gl::ContextID contextId, const std::string &captureLabel, const std::vector &binaryData) { std::string binaryDataFileName = GetBinaryDataFilePath(compression, contextId, captureLabel); std::string dataFilepath = outDir + binaryDataFileName; SaveFileHelper saveData(dataFilepath); if (compression) { // Save compressed data. uLong uncompressedSize = static_cast(binaryData.size()); uLong expectedCompressedSize = zlib_internal::GzipExpectedCompressedSize(uncompressedSize); std::vector compressedData(expectedCompressedSize, 0); uLong compressedSize = expectedCompressedSize; int zResult = zlib_internal::GzipCompressHelper(compressedData.data(), &compressedSize, binaryData.data(), uncompressedSize, nullptr, nullptr); if (zResult != Z_OK) { FATAL() << "Error compressing binary data: " << zResult; } saveData.write(compressedData.data(), compressedSize); } else { saveData.write(binaryData.data(), binaryData.size()); } } void WriteInitReplayCall(bool compression, std::ostream &out, gl::ContextID contextId, const std::string &captureLabel, size_t maxClientArraySize, size_t readBufferSize) { std::string binaryDataFileName = GetBinaryDataFilePath(compression, contextId, captureLabel); out << " InitializeReplay(\"" << binaryDataFileName << "\", " << maxClientArraySize << ", " << readBufferSize << ");\n"; } // TODO (http://anglebug.com/4599): Reset more state on frame loop void MaybeResetResources(std::stringstream &out, ResourceIDType resourceIDType, DataTracker *dataTracker, std::stringstream &header, ResourceTracker *resourceTracker, std::vector *binaryData) { switch (resourceIDType) { case ResourceIDType::Buffer: { BufferSet &newBuffers = resourceTracker->getNewBuffers(); BufferCalls &bufferRegenCalls = resourceTracker->getBufferRegenCalls(); BufferCalls &bufferRestoreCalls = resourceTracker->getBufferRestoreCalls(); BufferCalls &bufferMapCalls = resourceTracker->getBufferMapCalls(); BufferCalls &bufferUnmapCalls = resourceTracker->getBufferUnmapCalls(); // If we have any new buffers generated and not deleted during the run, delete them now if (!newBuffers.empty()) { out << " const GLuint deleteBuffers[] = {"; BufferSet::iterator bufferIter = newBuffers.begin(); for (size_t i = 0; bufferIter != newBuffers.end(); ++i, ++bufferIter) { if (i > 0) { out << ", "; } if ((i % 4) == 0) { out << "\n "; } out << "gBufferMap[" << (*bufferIter).value << "]"; } out << "};\n"; out << " glDeleteBuffers(" << newBuffers.size() << ", deleteBuffers);\n"; } // If any of our starting buffers were deleted during the run, recreate them BufferSet &buffersToRegen = resourceTracker->getBuffersToRegen(); for (const gl::BufferID id : buffersToRegen) { // Emit their regen calls for (CallCapture &call : bufferRegenCalls[id]) { out << " "; WriteCppReplayForCall(call, dataTracker, out, header, binaryData); out << ";\n"; } } // If any of our starting buffers were modified during the run, restore their contents BufferSet &buffersToRestore = resourceTracker->getBuffersToRestore(); for (const gl::BufferID id : buffersToRestore) { if (resourceTracker->getStartingBuffersMappedCurrent(id)) { // Some drivers require the buffer to be unmapped before you can update data, // which violates the spec. See gl::Buffer::bufferDataImpl(). for (CallCapture &call : bufferUnmapCalls[id]) { out << " "; WriteCppReplayForCall(call, dataTracker, out, header, binaryData); out << ";\n"; } } // Emit their restore calls for (CallCapture &call : bufferRestoreCalls[id]) { out << " "; WriteCppReplayForCall(call, dataTracker, out, header, binaryData); out << ";\n"; // Also note that this buffer has been implicitly unmapped by this call resourceTracker->setBufferUnmapped(id); } } // Update the map/unmap of buffers to match the starting state BufferSet startingBuffers = resourceTracker->getStartingBuffers(); for (const gl::BufferID id : startingBuffers) { // If the buffer was mapped at the start, but is not mapped now, we need to map if (resourceTracker->getStartingBuffersMappedInitial(id) && !resourceTracker->getStartingBuffersMappedCurrent(id)) { // Emit their map calls for (CallCapture &call : bufferMapCalls[id]) { out << " "; WriteCppReplayForCall(call, dataTracker, out, header, binaryData); out << ";\n"; } } // If the buffer was unmapped at the start, but is mapped now, we need to unmap if (!resourceTracker->getStartingBuffersMappedInitial(id) && resourceTracker->getStartingBuffersMappedCurrent(id)) { // Emit their unmap calls for (CallCapture &call : bufferUnmapCalls[id]) { out << " "; WriteCppReplayForCall(call, dataTracker, out, header, binaryData); out << ";\n"; } } } // Restore buffer bindings as seen during MEC std::vector &bufferBindingCalls = resourceTracker->getBufferBindingCalls(); for (CallCapture &call : bufferBindingCalls) { out << " "; WriteCppReplayForCall(call, dataTracker, out, header, binaryData); out << ";\n"; } break; } case ResourceIDType::ShaderProgram: { ProgramSet &newPrograms = resourceTracker->getNewPrograms(); // If we have any new programs created and not deleted during the run, delete them now for (const auto &newProgram : newPrograms) { out << " glDeleteProgram(gShaderProgramMap[" << newProgram.value << "]);\n"; } // TODO (http://anglebug.com/5968): Handle programs that need regen // This would only happen if a starting program was deleted during the run ASSERT(resourceTracker->getProgramsToRegen().empty()); break; } default: // TODO (http://anglebug.com/4599): Reset more than just buffers break; } } void MaybeResetFenceSyncObjects(std::stringstream &out, DataTracker *dataTracker, std::stringstream &header, ResourceTracker *resourceTracker, std::vector *binaryData) { FenceSyncCalls &fenceSyncRegenCalls = resourceTracker->getFenceSyncRegenCalls(); // If any of our starting fence sync objects were deleted during the run, recreate them FenceSyncSet &fenceSyncsToRegen = resourceTracker->getFenceSyncsToRegen(); for (const GLsync sync : fenceSyncsToRegen) { // Emit their regen calls for (CallCapture &call : fenceSyncRegenCalls[sync]) { out << " "; WriteCppReplayForCall(call, dataTracker, out, header, binaryData); out << ";\n"; } } } void MaybeResetOpaqueTypeObjects(std::stringstream &out, DataTracker *dataTracker, std::stringstream &header, ResourceTracker *resourceTracker, std::vector *binaryData) { MaybeResetFenceSyncObjects(out, dataTracker, header, resourceTracker, binaryData); } void WriteCppReplayFunctionWithParts(const gl::ContextID contextID, ReplayFunc replayFunc, DataTracker *dataTracker, uint32_t frameIndex, std::vector *binaryData, const std::vector &calls, std::stringstream &header, std::stringstream &callStream, std::stringstream &out) { std::stringstream callStreamParts; int callCount = 0; int partCount = 0; // Setup can get quite large. If over a certain size, break up the function to avoid // overflowing the stack if (calls.size() > kFunctionSizeLimit) { callStreamParts << "void " << FmtFunction(replayFunc, contextID, frameIndex, ++partCount) << "\n"; callStreamParts << "{\n"; } for (const CallCapture &call : calls) { callStreamParts << " "; WriteCppReplayForCall(call, dataTracker, callStreamParts, header, binaryData); callStreamParts << ";\n"; if (partCount > 0 && ++callCount % kFunctionSizeLimit == 0) { callStreamParts << "}\n"; callStreamParts << "\n"; callStreamParts << "void " << FmtFunction(replayFunc, contextID, frameIndex, ++partCount) << "\n"; callStreamParts << "{\n"; } } if (partCount > 0) { callStreamParts << "}\n"; callStreamParts << "\n"; // Write out the parts out << callStreamParts.str(); // Write out the calls to the parts for (int i = 1; i <= partCount; i++) { callStream << " " << FmtFunction(replayFunc, contextID, frameIndex, i) << ";\n"; } } else { // If we didn't chunk it up, write all the calls directly to SetupContext callStream << callStreamParts.str(); } } // Auxiliary contexts are other contexts in the share group that aren't the context calling // eglSwapBuffers(). void WriteAuxiliaryContextCppSetupReplay(bool compression, const std::string &outDir, const gl::Context *context, const std::string &captureLabel, uint32_t frameIndex, const std::vector &setupCalls, std::vector *binaryData, bool serializeStateEnabled, const FrameCaptureShared &frameCaptureShared) { ASSERT(frameCaptureShared.getWindowSurfaceContextID() != context->id()); DataTracker dataTracker; std::stringstream out; std::stringstream include; std::stringstream header; include << "#include \"" << FmtCapturePrefix(context->id(), captureLabel) << ".h\"\n"; include << "#include \"angle_trace_gl.h\"\n"; include << ""; include << "\n"; include << "namespace\n"; include << "{\n"; if (!captureLabel.empty()) { header << "namespace " << captureLabel << "\n"; header << "{\n"; out << "namespace " << captureLabel << "\n"; out << "{\n"; } std::stringstream setupCallStream; header << "void " << FmtSetupFunction(kNoPartId, context->id()) << ";\n"; setupCallStream << "void " << FmtSetupFunction(kNoPartId, context->id()) << "\n"; setupCallStream << "{\n"; WriteCppReplayFunctionWithParts(context->id(), ReplayFunc::Setup, &dataTracker, frameIndex, binaryData, setupCalls, include, setupCallStream, out); out << setupCallStream.str(); out << "}\n"; out << "\n"; if (!captureLabel.empty()) { header << "} // namespace " << captureLabel << "\n"; out << "} // namespace " << captureLabel << "\n"; } include << "} // namespace\n"; // Write out the source file. { std::string outString = out.str(); std::string headerString = include.str(); std::string cppFilePath = GetCaptureFilePath(outDir, context->id(), captureLabel, frameIndex, ".cpp"); SaveFileHelper saveCpp(cppFilePath); saveCpp << headerString << "\n" << outString; } // Write out the header file. { std::string headerContents = header.str(); std::stringstream headerPathStream; headerPathStream << outDir << FmtCapturePrefix(context->id(), captureLabel) << ".h"; std::string headerPath = headerPathStream.str(); SaveFileHelper saveHeader(headerPath); saveHeader << headerContents; } } void WriteWindowSurfaceContextCppReplay(bool compression, const std::string &outDir, const gl::Context *context, const std::string &captureLabel, uint32_t frameIndex, uint32_t frameCount, const std::vector &frameCalls, const std::vector &setupCalls, ResourceTracker *resourceTracker, std::vector *binaryData, bool serializeStateEnabled, const FrameCaptureShared &frameCaptureShared) { ASSERT(frameCaptureShared.getWindowSurfaceContextID() == context->id()); DataTracker dataTracker; std::stringstream out; std::stringstream header; egl::ShareGroup *shareGroup = context->getShareGroup(); egl::ContextSet *shareContextSet = shareGroup->getContexts(); header << "#include \"" << FmtCapturePrefix(kSharedContextId, captureLabel) << ".h\"\n"; for (gl::Context *shareContext : *shareContextSet) { header << "#include \"" << FmtCapturePrefix(shareContext->id(), captureLabel) << ".h\"\n"; } header << "#include \"angle_trace_gl.h\"\n"; header << ""; header << "\n"; header << "namespace\n"; header << "{\n"; if (frameIndex == 1 || frameIndex == frameCount) { out << "extern \"C\" {\n"; } if (frameIndex == 1) { std::stringstream setupCallStream; setupCallStream << "void " << FmtSetupFunction(kNoPartId, context->id()) << "\n"; setupCallStream << "{\n"; WriteCppReplayFunctionWithParts(context->id(), ReplayFunc::Setup, &dataTracker, frameIndex, binaryData, setupCalls, header, setupCallStream, out); out << setupCallStream.str(); out << "}\n"; out << "\n"; out << "void SetupReplay()\n"; out << "{\n"; out << " " << captureLabel << "::InitReplay();\n"; // Setup all of the shared objects. out << " " << captureLabel << "::" << FmtSetupFunction(kNoPartId, kSharedContextId) << ";\n"; // Setup the presentation (this) context before any other contexts in the share group. out << " " << FmtSetupFunction(kNoPartId, context->id()) << ";\n"; out << "}\n"; out << "\n"; } if (frameIndex == frameCount) { // Emit code to reset back to starting state out << "void " << FmtResetFunction() << "\n"; out << "{\n"; // TODO(http://anglebug.com/5878): Look at moving this into the shared context file since // it's resetting shared objects. std::stringstream restoreCallStream; for (ResourceIDType resourceType : AllEnums()) { MaybeResetResources(restoreCallStream, resourceType, &dataTracker, header, resourceTracker, binaryData); } // Reset opaque type objects that don't have IDs, so are not ResourceIDTypes. MaybeResetOpaqueTypeObjects(restoreCallStream, &dataTracker, header, resourceTracker, binaryData); out << restoreCallStream.str(); out << "}\n"; } if (frameIndex == 1 || frameIndex == frameCount) { out << "} // extern \"C\"\n"; out << "\n"; } if (!captureLabel.empty()) { out << "namespace " << captureLabel << "\n"; out << "{\n"; } if (!frameCalls.empty()) { std::stringstream callStream; callStream << "void " << FmtReplayFunction(context->id(), frameIndex) << "\n"; callStream << "{\n"; WriteCppReplayFunctionWithParts(context->id(), ReplayFunc::Replay, &dataTracker, frameIndex, binaryData, frameCalls, header, callStream, out); out << callStream.str(); out << "}\n"; } if (serializeStateEnabled) { std::string serializedContextString; if (SerializeContextToString(const_cast(context), &serializedContextString) == Result::Continue) { out << "const char *" << FmtGetSerializedContextStateFunction(context->id(), frameIndex) << "\n"; out << "{\n"; out << " return R\"(" << serializedContextString << ")\";\n"; out << "}\n"; out << "\n"; } } if (!captureLabel.empty()) { out << "} // namespace " << captureLabel << "\n"; } header << "} // namespace\n"; { std::string outString = out.str(); std::string headerString = header.str(); std::string cppFilePath = GetCaptureFilePath(outDir, context->id(), captureLabel, frameIndex, ".cpp"); SaveFileHelper saveCpp(cppFilePath); saveCpp << headerString << "\n" << outString; } } void WriteSharedContextCppReplay(bool compression, const std::string &outDir, const std::string &captureLabel, uint32_t frameIndex, uint32_t frameCount, const std::vector &setupCalls, ResourceTracker *resourceTracker, std::vector *binaryData, bool serializeStateEnabled, const FrameCaptureShared &frameCaptureShared) { DataTracker dataTracker; std::stringstream out; std::stringstream include; std::stringstream header; include << "#include \"" << FmtCapturePrefix(kSharedContextId, captureLabel) << ".h\"\n"; include << "#include \"angle_trace_gl.h\"\n"; include << ""; include << "\n"; include << "namespace\n"; include << "{\n"; if (!captureLabel.empty()) { header << "namespace " << captureLabel << "\n"; header << "{\n"; out << "namespace " << captureLabel << "\n"; out << "{\n"; } std::stringstream setupCallStream; header << "void " << FmtSetupFunction(kNoPartId, kSharedContextId) << ";\n"; setupCallStream << "void " << FmtSetupFunction(kNoPartId, kSharedContextId) << "\n"; setupCallStream << "{\n"; WriteCppReplayFunctionWithParts(kSharedContextId, ReplayFunc::Setup, &dataTracker, frameIndex, binaryData, setupCalls, include, setupCallStream, out); out << setupCallStream.str(); out << "}\n"; out << "\n"; if (!captureLabel.empty()) { header << "} // namespace " << captureLabel << "\n"; out << "} // namespace " << captureLabel << "\n"; } include << "} // namespace\n"; // Write out the source file. { std::string outString = out.str(); std::string headerString = include.str(); std::string cppFilePath = GetCaptureFilePath(outDir, kSharedContextId, captureLabel, frameIndex, ".cpp"); SaveFileHelper saveCpp(cppFilePath); saveCpp << headerString << "\n" << outString; } // Write out the header file. { std::string headerContents = header.str(); std::stringstream headerPathStream; headerPathStream << outDir << FmtCapturePrefix(kSharedContextId, captureLabel) << ".h"; std::string headerPath = headerPathStream.str(); SaveFileHelper saveHeader(headerPath); saveHeader << headerContents; } } ProgramSources GetAttachedProgramSources(const gl::Program *program) { ProgramSources sources; for (gl::ShaderType shaderType : gl::AllShaderTypes()) { const gl::Shader *shader = program->getAttachedShader(shaderType); if (shader) { sources[shaderType] = shader->getSourceString(); } } return sources; } template void CaptureUpdateResourceIDs(const CallCapture &call, const ParamCapture ¶m, std::vector *callsOut) { GLsizei n = call.params.getParamFlexName("n", "count", ParamType::TGLsizei, 0).value.GLsizeiVal; ASSERT(param.data.size() == 1); ResourceIDType resourceIDType = GetResourceIDTypeFromParamType(param.type); ASSERT(resourceIDType != ResourceIDType::InvalidEnum); const char *resourceName = GetResourceIDTypeName(resourceIDType); std::stringstream updateFuncNameStr; updateFuncNameStr << "Update" << resourceName << "ID"; std::string updateFuncName = updateFuncNameStr.str(); const IDType *returnedIDs = reinterpret_cast(param.data[0].data()); for (GLsizei idIndex = 0; idIndex < n; ++idIndex) { IDType id = returnedIDs[idIndex]; GLsizei readBufferOffset = idIndex * sizeof(gl::RenderbufferID); ParamBuffer params; params.addValueParam("id", ParamType::TGLuint, id.value); params.addValueParam("readBufferOffset", ParamType::TGLsizei, readBufferOffset); callsOut->emplace_back(updateFuncName, std::move(params)); } } void CaptureUpdateUniformLocations(const gl::Program *program, std::vector *callsOut) { const std::vector &uniforms = program->getState().getUniforms(); const std::vector &locations = program->getUniformLocations(); for (GLint location = 0; location < static_cast(locations.size()); ++location) { const gl::VariableLocation &locationVar = locations[location]; // This handles the case where the application calls glBindUniformLocationCHROMIUM // on an unused uniform. We must still store a -1 into gUniformLocations in case the // application attempts to call a glUniform* call. To do this we'll pass in a blank name to // force glGetUniformLocation to return -1. std::string name; ParamBuffer params; params.addValueParam("program", ParamType::TShaderProgramID, program->id()); if (locationVar.index >= uniforms.size()) { name = ""; } else { const gl::LinkedUniform &uniform = uniforms[locationVar.index]; name = uniform.name; if (uniform.isArray()) { if (locationVar.arrayIndex > 0) { // Non-sequential array uniform locations are not currently handled. // In practice array locations shouldn't ever be non-sequential. ASSERT(uniform.location == -1 || location == uniform.location + static_cast(locationVar.arrayIndex)); continue; } if (uniform.isArrayOfArrays()) { UNIMPLEMENTED(); } name = gl::StripLastArrayIndex(name); } } ParamCapture nameParam("name", ParamType::TGLcharConstPointer); CaptureString(name.c_str(), &nameParam); params.addParam(std::move(nameParam)); params.addValueParam("location", ParamType::TGLint, location); callsOut->emplace_back("UpdateUniformLocation", std::move(params)); } } void CaptureUpdateUniformBlockIndexes(const gl::Program *program, std::vector *callsOut) { const std::vector &uniformBlocks = program->getState().getUniformBlocks(); for (GLuint index = 0; index < uniformBlocks.size(); ++index) { ParamBuffer params; std::string name; params.addValueParam("program", ParamType::TShaderProgramID, program->id()); ParamCapture nameParam("name", ParamType::TGLcharConstPointer); CaptureString(uniformBlocks[index].name.c_str(), &nameParam); params.addParam(std::move(nameParam)); params.addValueParam("index", ParamType::TGLuint, index); callsOut->emplace_back("UpdateUniformBlockIndex", std::move(params)); } } void CaptureDeleteUniformLocations(gl::ShaderProgramID program, std::vector *callsOut) { ParamBuffer params; params.addValueParam("program", ParamType::TShaderProgramID, program); callsOut->emplace_back("DeleteUniformLocations", std::move(params)); } void MaybeCaptureUpdateResourceIDs(std::vector *callsOut) { const CallCapture &call = callsOut->back(); switch (call.entryPoint) { case EntryPoint::GLGenBuffers: { const ParamCapture &buffers = call.params.getParam("buffersPacked", ParamType::TBufferIDPointer, 1); CaptureUpdateResourceIDs(call, buffers, callsOut); break; } case EntryPoint::GLGenFencesNV: { const ParamCapture &fences = call.params.getParam("fencesPacked", ParamType::TFenceNVIDPointer, 1); CaptureUpdateResourceIDs(call, fences, callsOut); break; } case EntryPoint::GLGenFramebuffers: case EntryPoint::GLGenFramebuffersOES: { const ParamCapture &framebuffers = call.params.getParam("framebuffersPacked", ParamType::TFramebufferIDPointer, 1); CaptureUpdateResourceIDs(call, framebuffers, callsOut); break; } case EntryPoint::GLGenProgramPipelines: { const ParamCapture &pipelines = call.params.getParam("pipelinesPacked", ParamType::TProgramPipelineIDPointer, 1); CaptureUpdateResourceIDs(call, pipelines, callsOut); break; } case EntryPoint::GLGenQueries: case EntryPoint::GLGenQueriesEXT: { const ParamCapture &queries = call.params.getParam("idsPacked", ParamType::TQueryIDPointer, 1); CaptureUpdateResourceIDs(call, queries, callsOut); break; } case EntryPoint::GLGenRenderbuffers: case EntryPoint::GLGenRenderbuffersOES: { const ParamCapture &renderbuffers = call.params.getParam("renderbuffersPacked", ParamType::TRenderbufferIDPointer, 1); CaptureUpdateResourceIDs(call, renderbuffers, callsOut); break; } case EntryPoint::GLGenSamplers: { const ParamCapture &samplers = call.params.getParam("samplersPacked", ParamType::TSamplerIDPointer, 1); CaptureUpdateResourceIDs(call, samplers, callsOut); break; } case EntryPoint::GLGenSemaphoresEXT: { const ParamCapture &semaphores = call.params.getParam("semaphoresPacked", ParamType::TSemaphoreIDPointer, 1); CaptureUpdateResourceIDs(call, semaphores, callsOut); break; } case EntryPoint::GLGenTextures: { const ParamCapture &textures = call.params.getParam("texturesPacked", ParamType::TTextureIDPointer, 1); CaptureUpdateResourceIDs(call, textures, callsOut); break; } case EntryPoint::GLGenTransformFeedbacks: { const ParamCapture &xfbs = call.params.getParam("idsPacked", ParamType::TTransformFeedbackIDPointer, 1); CaptureUpdateResourceIDs(call, xfbs, callsOut); break; } case EntryPoint::GLGenVertexArrays: case EntryPoint::GLGenVertexArraysOES: { const ParamCapture &vertexArrays = call.params.getParam("arraysPacked", ParamType::TVertexArrayIDPointer, 1); CaptureUpdateResourceIDs(call, vertexArrays, callsOut); break; } case EntryPoint::GLCreateMemoryObjectsEXT: { const ParamCapture &memoryObjects = call.params.getParam("memoryObjectsPacked", ParamType::TMemoryObjectIDPointer, 1); CaptureUpdateResourceIDs(call, memoryObjects, callsOut); break; } default: break; } } void CaptureUpdateCurrentProgram(const CallCapture &call, std::vector *callsOut) { const ParamCapture ¶m = call.params.getParam("programPacked", ParamType::TShaderProgramID, 0); gl::ShaderProgramID programID = param.value.ShaderProgramIDVal; ParamBuffer paramBuffer; paramBuffer.addValueParam("program", ParamType::TShaderProgramID, programID); callsOut->emplace_back("UpdateCurrentProgram", std::move(paramBuffer)); } bool IsDefaultCurrentValue(const gl::VertexAttribCurrentValueData ¤tValue) { if (currentValue.Type != gl::VertexAttribType::Float) return false; return currentValue.Values.FloatValues[0] == 0.0f && currentValue.Values.FloatValues[1] == 0.0f && currentValue.Values.FloatValues[2] == 0.0f && currentValue.Values.FloatValues[3] == 1.0f; } bool IsQueryActive(const gl::State &glState, gl::QueryID &queryID) { const gl::ActiveQueryMap &activeQueries = glState.getActiveQueriesForCapture(); for (const auto &activeQueryIter : activeQueries) { const gl::Query *activeQuery = activeQueryIter.get(); if (activeQuery && activeQuery->id() == queryID) { return true; } } return false; } void Capture(std::vector *setupCalls, CallCapture &&call) { setupCalls->emplace_back(std::move(call)); } void CaptureFramebufferAttachment(std::vector *setupCalls, const gl::State &replayState, const gl::FramebufferAttachment &attachment) { GLuint resourceID = attachment.getResource()->getId(); // TODO(jmadill): Layer attachments. http://anglebug.com/3662 if (attachment.type() == GL_TEXTURE) { gl::ImageIndex index = attachment.getTextureImageIndex(); Capture(setupCalls, CaptureFramebufferTexture2D(replayState, true, GL_FRAMEBUFFER, attachment.getBinding(), index.getTarget(), {resourceID}, index.getLevelIndex())); } else { ASSERT(attachment.type() == GL_RENDERBUFFER); Capture(setupCalls, CaptureFramebufferRenderbuffer(replayState, true, GL_FRAMEBUFFER, attachment.getBinding(), GL_RENDERBUFFER, {resourceID})); } } void CaptureUpdateUniformValues(const gl::State &replayState, const gl::Context *context, const gl::Program *program, std::vector *callsOut) { if (!program->isLinked()) { // We can't populate uniforms if the program hasn't been linked return; } // We need to bind the program and update its uniforms // TODO (http://anglebug.com/3662): Only bind if different from currently bound Capture(callsOut, CaptureUseProgram(replayState, true, program->id())); CaptureUpdateCurrentProgram(callsOut->back(), callsOut); const std::vector &uniforms = program->getState().getUniforms(); for (const gl::LinkedUniform &uniform : uniforms) { std::string uniformName = uniform.name; int uniformCount = 1; if (uniform.isArray()) { if (uniform.isArrayOfArrays()) { UNIMPLEMENTED(); continue; } uniformCount = uniform.arraySizes[0]; uniformName = gl::StripLastArrayIndex(uniformName); } gl::UniformLocation uniformLoc = program->getUniformLocation(uniformName); const gl::UniformTypeInfo *typeInfo = uniform.typeInfo; int componentCount = typeInfo->componentCount; int uniformSize = uniformCount * componentCount; // For arrayed uniforms, we'll need to increment a read location gl::UniformLocation readLoc = uniformLoc; // If the uniform is unused, just continue if (readLoc.value == -1) { continue; } // Image uniforms are special and cannot be set this way if (typeInfo->isImageType) { continue; } // Samplers should be populated with GL_INT, regardless of return type if (typeInfo->isSampler) { std::vector uniformBuffer(uniformSize); for (int index = 0; index < uniformCount; index++, readLoc.value++) { program->getUniformiv(context, readLoc, uniformBuffer.data() + index * componentCount); } Capture(callsOut, CaptureUniform1iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); continue; } switch (typeInfo->componentType) { case GL_FLOAT: { std::vector uniformBuffer(uniformSize); for (int index = 0; index < uniformCount; index++, readLoc.value++) { program->getUniformfv(context, readLoc, uniformBuffer.data() + index * componentCount); } switch (typeInfo->type) { // Note: All matrix uniforms are populated without transpose case GL_FLOAT_MAT4x3: Capture(callsOut, CaptureUniformMatrix4x3fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT4x2: Capture(callsOut, CaptureUniformMatrix4x2fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT4: Capture(callsOut, CaptureUniformMatrix4fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT3x4: Capture(callsOut, CaptureUniformMatrix3x4fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT3x2: Capture(callsOut, CaptureUniformMatrix3x2fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT3: Capture(callsOut, CaptureUniformMatrix3fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT2x4: Capture(callsOut, CaptureUniformMatrix2x4fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT2x3: Capture(callsOut, CaptureUniformMatrix2x3fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT2: Capture(callsOut, CaptureUniformMatrix2fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_VEC4: Capture(callsOut, CaptureUniform4fv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case GL_FLOAT_VEC3: Capture(callsOut, CaptureUniform3fv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case GL_FLOAT_VEC2: Capture(callsOut, CaptureUniform2fv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case GL_FLOAT: Capture(callsOut, CaptureUniform1fv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; default: UNIMPLEMENTED(); break; } break; } case GL_INT: { std::vector uniformBuffer(uniformSize); for (int index = 0; index < uniformCount; index++, readLoc.value++) { program->getUniformiv(context, readLoc, uniformBuffer.data() + index * componentCount); } switch (componentCount) { case 4: Capture(callsOut, CaptureUniform4iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 3: Capture(callsOut, CaptureUniform3iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 2: Capture(callsOut, CaptureUniform2iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 1: Capture(callsOut, CaptureUniform1iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; default: UNIMPLEMENTED(); break; } break; } case GL_BOOL: case GL_UNSIGNED_INT: { std::vector uniformBuffer(uniformSize); for (int index = 0; index < uniformCount; index++, readLoc.value++) { program->getUniformuiv(context, readLoc, uniformBuffer.data() + index * componentCount); } switch (componentCount) { case 4: Capture(callsOut, CaptureUniform4uiv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 3: Capture(callsOut, CaptureUniform3uiv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 2: Capture(callsOut, CaptureUniform2uiv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 1: Capture(callsOut, CaptureUniform1uiv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; default: UNIMPLEMENTED(); break; } break; } default: UNIMPLEMENTED(); break; } } } void CaptureVertexPointerES1(std::vector *setupCalls, gl::State *replayState, GLuint attribIndex, const gl::VertexAttribute &attrib, const gl::VertexBinding &binding) { switch (gl::GLES1Renderer::VertexArrayType(attribIndex)) { case gl::ClientVertexArrayType::Vertex: Capture(setupCalls, CaptureVertexPointer(*replayState, true, attrib.format->channelCount, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; case gl::ClientVertexArrayType::Normal: Capture(setupCalls, CaptureNormalPointer(*replayState, true, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; case gl::ClientVertexArrayType::Color: Capture(setupCalls, CaptureColorPointer(*replayState, true, attrib.format->channelCount, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; case gl::ClientVertexArrayType::PointSize: Capture(setupCalls, CapturePointSizePointerOES(*replayState, true, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; case gl::ClientVertexArrayType::TextureCoord: Capture(setupCalls, CaptureTexCoordPointer(*replayState, true, attrib.format->channelCount, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; default: UNREACHABLE(); } } void CaptureVertexArrayData(std::vector *setupCalls, const gl::Context *context, const gl::VertexArray *vertexArray, gl::State *replayState) { const std::vector &vertexAttribs = vertexArray->getVertexAttributes(); const std::vector &vertexBindings = vertexArray->getVertexBindings(); for (GLuint attribIndex = 0; attribIndex < gl::MAX_VERTEX_ATTRIBS; ++attribIndex) { const gl::VertexAttribute defaultAttrib(attribIndex); const gl::VertexBinding defaultBinding; const gl::VertexAttribute &attrib = vertexAttribs[attribIndex]; const gl::VertexBinding &binding = vertexBindings[attrib.bindingIndex]; if (attrib.enabled != defaultAttrib.enabled) { if (context->isGLES1()) { Capture(setupCalls, CaptureEnableClientState(*replayState, false, gl::GLES1Renderer::VertexArrayType(attribIndex))); } else { Capture(setupCalls, CaptureEnableVertexAttribArray(*replayState, false, attribIndex)); } } if (attrib.format != defaultAttrib.format || attrib.pointer != defaultAttrib.pointer || binding.getStride() != defaultBinding.getStride() || binding.getBuffer().get() != nullptr) { // Each attribute can pull from a separate buffer, so check the binding gl::Buffer *buffer = binding.getBuffer().get(); if (buffer && buffer != replayState->getArrayBuffer()) { replayState->setBufferBinding(context, gl::BufferBinding::Array, buffer); Capture(setupCalls, CaptureBindBuffer(*replayState, true, gl::BufferBinding::Array, buffer->id())); } // Establish the relationship between currently bound buffer and the VAO if (context->isGLES1()) { CaptureVertexPointerES1(setupCalls, replayState, attribIndex, attrib, binding); } else { Capture(setupCalls, CaptureVertexAttribPointer( *replayState, true, attribIndex, attrib.format->channelCount, attrib.format->vertexAttribType, attrib.format->isNorm(), binding.getStride(), attrib.pointer)); } } if (binding.getDivisor() != 0) { Capture(setupCalls, CaptureVertexAttribDivisor(*replayState, true, attribIndex, binding.getDivisor())); } } // The element array buffer is not per attribute, but per VAO gl::Buffer *elementArrayBuffer = vertexArray->getElementArrayBuffer(); if (elementArrayBuffer) { Capture(setupCalls, CaptureBindBuffer(*replayState, true, gl::BufferBinding::ElementArray, elementArrayBuffer->id())); } } void CaptureTextureStorage(std::vector *setupCalls, gl::State *replayState, const gl::Texture *texture) { // Use mip-level 0 for the base dimensions gl::ImageIndex imageIndex = gl::ImageIndex::MakeFromType(texture->getType(), 0); const gl::ImageDesc &desc = texture->getTextureState().getImageDesc(imageIndex); switch (texture->getType()) { case gl::TextureType::_2D: case gl::TextureType::CubeMap: { Capture(setupCalls, CaptureTexStorage2D(*replayState, true, texture->getType(), texture->getImmutableLevels(), desc.format.info->internalFormat, desc.size.width, desc.size.height)); break; } case gl::TextureType::_3D: case gl::TextureType::_2DArray: case gl::TextureType::CubeMapArray: { Capture(setupCalls, CaptureTexStorage3D( *replayState, true, texture->getType(), texture->getImmutableLevels(), desc.format.info->internalFormat, desc.size.width, desc.size.height, desc.size.depth)); break; } case gl::TextureType::Buffer: { // Do nothing. This will already be captured as a buffer. break; } default: UNIMPLEMENTED(); break; } } void CaptureTextureContents(std::vector *setupCalls, gl::State *replayState, const gl::Texture *texture, const gl::ImageIndex &index, const gl::ImageDesc &desc, GLuint size, const void *data) { const gl::InternalFormat &format = *desc.format.info; if (index.getType() == gl::TextureType::Buffer) { // Zero binding size indicates full buffer bound if (texture->getBuffer().getSize() == 0) { Capture(setupCalls, CaptureTexBufferEXT(*replayState, true, index.getType(), format.internalFormat, texture->getBuffer().get()->id())); } else { Capture(setupCalls, CaptureTexBufferRangeEXT(*replayState, true, index.getType(), format.internalFormat, texture->getBuffer().get()->id(), texture->getBuffer().getOffset(), texture->getBuffer().getSize())); } // For buffers, we're done return; } bool is3D = (index.getType() == gl::TextureType::_3D || index.getType() == gl::TextureType::_2DArray || index.getType() == gl::TextureType::CubeMapArray); if (format.compressed) { if (is3D) { if (texture->getImmutableFormat()) { Capture(setupCalls, CaptureCompressedTexSubImage3D( *replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, 0, desc.size.width, desc.size.height, desc.size.depth, format.internalFormat, size, data)); } else { Capture(setupCalls, CaptureCompressedTexImage3D(*replayState, true, index.getTarget(), index.getLevelIndex(), format.internalFormat, desc.size.width, desc.size.height, desc.size.depth, 0, size, data)); } } else { if (texture->getImmutableFormat()) { Capture(setupCalls, CaptureCompressedTexSubImage2D( *replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, desc.size.width, desc.size.height, format.internalFormat, size, data)); } else { Capture(setupCalls, CaptureCompressedTexImage2D( *replayState, true, index.getTarget(), index.getLevelIndex(), format.internalFormat, desc.size.width, desc.size.height, 0, size, data)); } } } else { if (is3D) { if (texture->getImmutableFormat()) { Capture(setupCalls, CaptureTexSubImage3D(*replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, 0, desc.size.width, desc.size.height, desc.size.depth, format.format, format.type, data)); } else { Capture( setupCalls, CaptureTexImage3D(*replayState, true, index.getTarget(), index.getLevelIndex(), format.internalFormat, desc.size.width, desc.size.height, desc.size.depth, 0, format.format, format.type, data)); } } else { if (texture->getImmutableFormat()) { Capture(setupCalls, CaptureTexSubImage2D(*replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, desc.size.width, desc.size.height, format.format, format.type, data)); } else { Capture(setupCalls, CaptureTexImage2D(*replayState, true, index.getTarget(), index.getLevelIndex(), format.internalFormat, desc.size.width, desc.size.height, 0, format.format, format.type, data)); } } } } // TODO(http://anglebug.com/4599): Improve reset/restore call generation // There are multiple ways to track reset calls for individual resources. For now, we are tracking // separate lists of instructions that mirror the calls created during mid-execution setup. Other // methods could involve passing the original CallCaptures to this function, or tracking the // indices of original setup calls. void CaptureBufferResetCalls(const gl::State &replayState, ResourceTracker *resourceTracker, gl::BufferID *id, const gl::Buffer *buffer) { // Track this as a starting resource that may need to be restored. BufferSet &startingBuffers = resourceTracker->getStartingBuffers(); startingBuffers.insert(*id); // Track calls to regenerate a given buffer BufferCalls &bufferRegenCalls = resourceTracker->getBufferRegenCalls(); Capture(&bufferRegenCalls[*id], CaptureDeleteBuffers(replayState, true, 1, id)); Capture(&bufferRegenCalls[*id], CaptureGenBuffers(replayState, true, 1, id)); MaybeCaptureUpdateResourceIDs(&bufferRegenCalls[*id]); // Track calls to restore a given buffer's contents BufferCalls &bufferRestoreCalls = resourceTracker->getBufferRestoreCalls(); Capture(&bufferRestoreCalls[*id], CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, *id)); Capture(&bufferRestoreCalls[*id], CaptureBufferData(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getSize()), buffer->getMapPointer(), buffer->getUsage())); if (buffer->isMapped()) { // Track calls to remap a buffer that started as mapped BufferCalls &bufferMapCalls = resourceTracker->getBufferMapCalls(); Capture(&bufferMapCalls[*id], CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, *id)); void *dontCare = nullptr; Capture(&bufferMapCalls[*id], CaptureMapBufferRange(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getMapOffset()), static_cast(buffer->getMapLength()), buffer->getAccessFlags(), dontCare)); // Track the bufferID that was just mapped bufferMapCalls[*id].back().params.setMappedBufferID(buffer->id()); } // Track calls unmap a buffer that started as unmapped BufferCalls &bufferUnmapCalls = resourceTracker->getBufferUnmapCalls(); Capture(&bufferUnmapCalls[*id], CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, *id)); Capture(&bufferUnmapCalls[*id], CaptureUnmapBuffer(replayState, true, gl::BufferBinding::Array, GL_TRUE)); } void CaptureFenceSyncResetCalls(const gl::State &replayState, ResourceTracker *resourceTracker, GLsync syncID, const gl::Sync *sync) { // Track calls to regenerate a given fence sync FenceSyncCalls &fenceSyncRegenCalls = resourceTracker->getFenceSyncRegenCalls(); Capture(&fenceSyncRegenCalls[syncID], CaptureFenceSync(replayState, true, sync->getCondition(), sync->getFlags(), syncID)); MaybeCaptureUpdateResourceIDs(&fenceSyncRegenCalls[syncID]); } void CaptureBufferBindingResetCalls(const gl::State &replayState, ResourceTracker *resourceTracker, gl::BufferBinding binding, gl::BufferID id) { std::vector &bufferBindingCalls = resourceTracker->getBufferBindingCalls(); Capture(&bufferBindingCalls, CaptureBindBuffer(replayState, true, binding, id)); } void CaptureIndexedBuffers(const gl::State &glState, const gl::BufferVector &indexedBuffers, gl::BufferBinding binding, std::vector *setupCalls) { for (unsigned int index = 0; index < indexedBuffers.size(); ++index) { const gl::OffsetBindingPointer &buffer = indexedBuffers[index]; if (buffer.get() == nullptr) { continue; } GLintptr offset = buffer.getOffset(); GLsizeiptr size = buffer.getSize(); gl::BufferID bufferID = buffer.get()->id(); // Context::bindBufferBase() calls Context::bindBufferRange() with size and offset = 0. if ((offset == 0) && (size == 0)) { Capture(setupCalls, CaptureBindBufferBase(glState, true, binding, index, bufferID)); } else { Capture(setupCalls, CaptureBindBufferRange(glState, true, binding, index, bufferID, offset, size)); } } } void CaptureDefaultVertexAttribs(const gl::State &replayState, const gl::State &apiState, std::vector *setupCalls) { const std::vector ¤tValues = apiState.getVertexAttribCurrentValues(); for (GLuint attribIndex = 0; attribIndex < gl::MAX_VERTEX_ATTRIBS; ++attribIndex) { const gl::VertexAttribCurrentValueData &defaultValue = currentValues[attribIndex]; if (!IsDefaultCurrentValue(defaultValue)) { Capture(setupCalls, CaptureVertexAttrib4fv(replayState, true, attribIndex, defaultValue.Values.FloatValues)); } } } // Capture the setup of the state that's shared by all of the contexts in the share group: // OpenGL ES Version 3.2 (October 22, 2019) // Chapter 5 Shared Objects and Multiple Contexts // Objects that can be shared between contexts include buffer objects, program // and shader objects, renderbuffer objects, sampler objects, sync objects, and texture // objects (except for the texture objects named zero). // Objects which contain references to other objects include framebuffer, program // pipeline, transform feedback, and vertex array objects. Such objects are called // container objects and are not shared. void CaptureSharedContextMidExecutionSetup(const gl::Context *context, std::vector *setupCalls, ResourceTracker *resourceTracker) { FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); const gl::State &apiState = context->getState(); gl::State replayState(nullptr, nullptr, nullptr, nullptr, nullptr, EGL_OPENGL_ES_API, apiState.getClientVersion(), false, true, true, true, false, EGL_CONTEXT_PRIORITY_MEDIUM_IMG, apiState.hasProtectedContent()); // Small helper function to make the code more readable. auto cap = [frameCaptureShared, setupCalls](CallCapture &&call) { frameCaptureShared->updateReadBufferSize(call.params.getReadBufferSize()); setupCalls->emplace_back(std::move(call)); }; // Capture Buffer data. const gl::BufferManager &buffers = apiState.getBufferManagerForCapture(); for (const auto &bufferIter : buffers) { gl::BufferID id = {bufferIter.first}; gl::Buffer *buffer = bufferIter.second; if (id.value == 0) { continue; } // glBufferData. Would possibly be better implemented using a getData impl method. // Saving buffers that are mapped during a swap is not yet handled. if (buffer->getSize() == 0) { continue; } // Remember if the buffer was already mapped GLboolean bufferMapped = buffer->isMapped(); // If needed, map the buffer so we can capture its contents if (!bufferMapped) { (void)buffer->mapRange(context, 0, static_cast(buffer->getSize()), GL_MAP_READ_BIT); } // Generate binding. cap(CaptureGenBuffers(replayState, true, 1, &id)); MaybeCaptureUpdateResourceIDs(setupCalls); // Always use the array buffer binding point to upload data to keep things simple. if (buffer != replayState.getArrayBuffer()) { replayState.setBufferBinding(context, gl::BufferBinding::Array, buffer); cap(CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, id)); } if (buffer->isImmutable()) { cap(CaptureBufferStorageEXT(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getSize()), buffer->getMapPointer(), buffer->getStorageExtUsageFlags())); } else { cap(CaptureBufferData(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getSize()), buffer->getMapPointer(), buffer->getUsage())); } if (bufferMapped) { void *dontCare = nullptr; Capture(setupCalls, CaptureMapBufferRange(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getMapOffset()), static_cast(buffer->getMapLength()), buffer->getAccessFlags(), dontCare)); resourceTracker->setStartingBufferMapped(buffer->id(), true); frameCaptureShared->trackBufferMapping( &setupCalls->back(), buffer->id(), static_cast(buffer->getMapOffset()), static_cast(buffer->getMapLength()), (buffer->getAccessFlags() & GL_MAP_WRITE_BIT) != 0); } else { resourceTracker->setStartingBufferMapped(buffer->id(), false); } // Generate the calls needed to restore this buffer to original state for frame looping CaptureBufferResetCalls(replayState, resourceTracker, &id, buffer); // Unmap the buffer if it wasn't already mapped if (!bufferMapped) { GLboolean dontCare; (void)buffer->unmap(context, &dontCare); } } // Capture Texture setup and data. const gl::TextureManager &textures = apiState.getTextureManagerForCapture(); for (const auto &textureIter : textures) { gl::TextureID id = {textureIter.first}; gl::Texture *texture = textureIter.second; if (id.value == 0) { continue; } // Gen the Texture. cap(CaptureGenTextures(replayState, true, 1, &id)); MaybeCaptureUpdateResourceIDs(setupCalls); cap(CaptureBindTexture(replayState, true, texture->getType(), id)); // Capture sampler parameter states. // TODO(jmadill): More sampler / texture states. http://anglebug.com/3662 gl::SamplerState defaultSamplerState = gl::SamplerState::CreateDefaultForTarget(texture->getType()); const gl::SamplerState &textureSamplerState = texture->getSamplerState(); auto capTexParam = [cap, &replayState, texture](GLenum pname, GLint param) { cap(CaptureTexParameteri(replayState, true, texture->getType(), pname, param)); }; auto capTexParamf = [cap, &replayState, texture](GLenum pname, GLfloat param) { cap(CaptureTexParameterf(replayState, true, texture->getType(), pname, param)); }; if (textureSamplerState.getMinFilter() != defaultSamplerState.getMinFilter()) { capTexParam(GL_TEXTURE_MIN_FILTER, textureSamplerState.getMinFilter()); } if (textureSamplerState.getMagFilter() != defaultSamplerState.getMagFilter()) { capTexParam(GL_TEXTURE_MAG_FILTER, textureSamplerState.getMagFilter()); } if (textureSamplerState.getWrapR() != defaultSamplerState.getWrapR()) { capTexParam(GL_TEXTURE_WRAP_R, textureSamplerState.getWrapR()); } if (textureSamplerState.getWrapS() != defaultSamplerState.getWrapS()) { capTexParam(GL_TEXTURE_WRAP_S, textureSamplerState.getWrapS()); } if (textureSamplerState.getWrapT() != defaultSamplerState.getWrapT()) { capTexParam(GL_TEXTURE_WRAP_T, textureSamplerState.getWrapT()); } if (textureSamplerState.getMinLod() != defaultSamplerState.getMinLod()) { capTexParamf(GL_TEXTURE_MIN_LOD, textureSamplerState.getMinLod()); } if (textureSamplerState.getMaxLod() != defaultSamplerState.getMaxLod()) { capTexParamf(GL_TEXTURE_MAX_LOD, textureSamplerState.getMaxLod()); } if (textureSamplerState.getCompareMode() != defaultSamplerState.getCompareMode()) { capTexParam(GL_TEXTURE_COMPARE_MODE, textureSamplerState.getCompareMode()); } if (textureSamplerState.getCompareFunc() != defaultSamplerState.getCompareFunc()) { capTexParam(GL_TEXTURE_COMPARE_FUNC, textureSamplerState.getCompareFunc()); } // Texture parameters if (texture->getSwizzleRed() != GL_RED) { capTexParam(GL_TEXTURE_SWIZZLE_R, texture->getSwizzleRed()); } if (texture->getSwizzleGreen() != GL_GREEN) { capTexParam(GL_TEXTURE_SWIZZLE_G, texture->getSwizzleGreen()); } if (texture->getSwizzleBlue() != GL_BLUE) { capTexParam(GL_TEXTURE_SWIZZLE_B, texture->getSwizzleBlue()); } if (texture->getSwizzleAlpha() != GL_ALPHA) { capTexParam(GL_TEXTURE_SWIZZLE_A, texture->getSwizzleAlpha()); } if (texture->getBaseLevel() != 0) { capTexParam(GL_TEXTURE_BASE_LEVEL, texture->getBaseLevel()); } if (texture->getMaxLevel() != 1000) { capTexParam(GL_TEXTURE_MAX_LEVEL, texture->getMaxLevel()); } // If the texture is immutable, initialize it with TexStorage if (texture->getImmutableFormat()) { CaptureTextureStorage(setupCalls, &replayState, texture); } // Iterate texture levels and layers. gl::ImageIndexIterator imageIter = gl::ImageIndexIterator::MakeGeneric( texture->getType(), 0, texture->getMipmapMaxLevel() + 1, gl::ImageIndex::kEntireLevel, gl::ImageIndex::kEntireLevel); while (imageIter.hasNext()) { gl::ImageIndex index = imageIter.next(); const gl::ImageDesc &desc = texture->getTextureState().getImageDesc(index); if (desc.size.empty()) { continue; } const gl::InternalFormat &format = *desc.format.info; // Check for supported textures ASSERT(index.getType() == gl::TextureType::_2D || index.getType() == gl::TextureType::_3D || index.getType() == gl::TextureType::_2DArray || index.getType() == gl::TextureType::Buffer || index.getType() == gl::TextureType::CubeMap || index.getType() == gl::TextureType::CubeMapArray); if (index.getType() == gl::TextureType::Buffer) { // The buffer contents are already backed up, but we need to emit the TexBuffer // binding calls CaptureTextureContents(setupCalls, &replayState, texture, index, desc, 0, 0); continue; } if (format.compressed) { // For compressed images, we've tracked a copy of the incoming data, so we can // use that rather than try to read data back that may have been converted. const std::vector &capturedTextureLevel = context->getShareGroup()->getFrameCaptureShared()->retrieveCachedTextureLevel( texture->id(), index.getTarget(), index.getLevelIndex()); // Use the shadow copy of the data to populate the call CaptureTextureContents(setupCalls, &replayState, texture, index, desc, static_cast(capturedTextureLevel.size()), capturedTextureLevel.data()); } else { // Use ANGLE_get_image to read back pixel data. if (context->getExtensions().getImageANGLE) { GLenum getFormat = format.format; GLenum getType = format.type; angle::MemoryBuffer data; const gl::Extents size(desc.size.width, desc.size.height, desc.size.depth); const gl::PixelUnpackState &unpack = apiState.getUnpackState(); GLuint endByte = 0; bool unpackSize = format.computePackUnpackEndByte(getType, size, unpack, true, &endByte); ASSERT(unpackSize); bool result = data.resize(endByte); ASSERT(result); gl::PixelPackState packState; packState.alignment = 1; (void)texture->getTexImage(context, packState, nullptr, index.getTarget(), index.getLevelIndex(), getFormat, getType, data.data()); CaptureTextureContents(setupCalls, &replayState, texture, index, desc, static_cast(data.size()), data.data()); } else { CaptureTextureContents(setupCalls, &replayState, texture, index, desc, 0, nullptr); } } } } // Capture Renderbuffers. const gl::RenderbufferManager &renderbuffers = apiState.getRenderbufferManagerForCapture(); for (const auto &renderbufIter : renderbuffers) { gl::RenderbufferID id = {renderbufIter.first}; const gl::Renderbuffer *renderbuffer = renderbufIter.second; // Generate renderbuffer id. cap(CaptureGenRenderbuffers(replayState, true, 1, &id)); MaybeCaptureUpdateResourceIDs(setupCalls); cap(CaptureBindRenderbuffer(replayState, true, GL_RENDERBUFFER, id)); GLenum internalformat = renderbuffer->getFormat().info->internalFormat; if (renderbuffer->getSamples() > 0) { // Note: We could also use extensions if available. cap(CaptureRenderbufferStorageMultisample( replayState, true, GL_RENDERBUFFER, renderbuffer->getSamples(), internalformat, renderbuffer->getWidth(), renderbuffer->getHeight())); } else { cap(CaptureRenderbufferStorage(replayState, true, GL_RENDERBUFFER, internalformat, renderbuffer->getWidth(), renderbuffer->getHeight())); } // TODO(jmadill): Capture renderbuffer contents. http://anglebug.com/3662 } // Capture Shaders and Programs. const gl::ShaderProgramManager &shadersAndPrograms = apiState.getShaderProgramManagerForCapture(); const gl::ResourceMap &shaders = shadersAndPrograms.getShadersForCapture(); const gl::ResourceMap &programs = shadersAndPrograms.getProgramsForCaptureAndPerf(); // Capture Program binary state. Use max ID as a temporary shader ID. gl::ShaderProgramID tempShaderID = {resourceTracker->getMaxShaderPrograms()}; for (const auto &programIter : programs) { gl::ShaderProgramID id = {programIter.first}; const gl::Program *program = programIter.second; // Unlinked programs don't have an executable. Thus they don't need to be captured. // Programs are shared by contexts in the share group and only need to be captured once. if (!program->isLinked()) { continue; } // Get last linked shader source. const ProgramSources &linkedSources = context->getShareGroup()->getFrameCaptureShared()->getProgramSources(id); cap(CaptureCreateProgram(replayState, true, id.value)); // Compile with last linked sources. for (gl::ShaderType shaderType : program->getExecutable().getLinkedShaderStages()) { const std::string &sourceString = linkedSources[shaderType]; const char *sourcePointer = sourceString.c_str(); // Compile and attach the temporary shader. Then free it immediately. cap(CaptureCreateShader(replayState, true, shaderType, tempShaderID.value)); cap(CaptureShaderSource(replayState, true, tempShaderID, 1, &sourcePointer, nullptr)); cap(CaptureCompileShader(replayState, true, tempShaderID)); cap(CaptureAttachShader(replayState, true, id, tempShaderID)); cap(CaptureDeleteShader(replayState, true, tempShaderID)); } // Gather XFB varyings std::vector xfbVaryings; for (const gl::TransformFeedbackVarying &xfbVarying : program->getState().getLinkedTransformFeedbackVaryings()) { xfbVaryings.push_back(xfbVarying.nameWithArrayIndex()); } if (!xfbVaryings.empty()) { std::vector varyingsStrings; for (const std::string &varyingString : xfbVaryings) { varyingsStrings.push_back(varyingString.data()); } GLenum xfbMode = program->getState().getTransformFeedbackBufferMode(); cap(CaptureTransformFeedbackVaryings(replayState, true, id, static_cast(xfbVaryings.size()), varyingsStrings.data(), xfbMode)); } // Force the attributes to be bound the same way as in the existing program. // This can affect attributes that are optimized out in some implementations. for (const sh::ShaderVariable &attrib : program->getState().getProgramInputs()) { if (gl::IsBuiltInName(attrib.name)) { // Don't try to bind built-in attributes continue; } // Separable programs may not have a VS, meaning it may not have attributes. if (program->getExecutable().hasLinkedShaderStage(gl::ShaderType::Vertex)) { ASSERT(attrib.location != -1); cap(CaptureBindAttribLocation(replayState, true, id, static_cast(attrib.location), attrib.name.c_str())); } } if (program->isSeparable()) { // MEC manually recreates separable programs, rather than attempting to recreate a call // to glCreateShaderProgramv(), so insert a call to mark it separable. cap(CaptureProgramParameteri(replayState, true, id, GL_PROGRAM_SEPARABLE, GL_TRUE)); } cap(CaptureLinkProgram(replayState, true, id)); CaptureUpdateUniformLocations(program, setupCalls); CaptureUpdateUniformValues(replayState, context, program, setupCalls); CaptureUpdateUniformBlockIndexes(program, setupCalls); // Capture uniform block bindings for each program for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < program->getActiveUniformBlockCount(); uniformBlockIndex++) { GLuint blockBinding = program->getUniformBlockBinding(uniformBlockIndex); cap(CaptureUniformBlockBinding(replayState, true, id, {uniformBlockIndex}, blockBinding)); } resourceTracker->onShaderProgramAccess(id); resourceTracker->getStartingPrograms().insert(id); } // Handle shaders. for (const auto &shaderIter : shaders) { gl::ShaderProgramID id = {shaderIter.first}; gl::Shader *shader = shaderIter.second; // Skip shaders scheduled for deletion. // Shaders are shared by contexts in the share group and only need to be captured once. if (shader->hasBeenDeleted()) { continue; } cap(CaptureCreateShader(replayState, true, shader->getType(), id.value)); std::string shaderSource = shader->getSourceString(); const char *sourcePointer = shaderSource.empty() ? nullptr : shaderSource.c_str(); // This does not handle some more tricky situations like attaching shaders to a non-linked // program. Or attaching uncompiled shaders. Or attaching and then deleting a shader. // TODO(jmadill): Handle trickier program uses. http://anglebug.com/3662 if (shader->isCompiled()) { const std::string &capturedSource = context->getShareGroup()->getFrameCaptureShared()->getShaderSource(id); if (capturedSource != shaderSource) { ASSERT(!capturedSource.empty()); sourcePointer = capturedSource.c_str(); } cap(CaptureShaderSource(replayState, true, id, 1, &sourcePointer, nullptr)); cap(CaptureCompileShader(replayState, true, id)); } if (sourcePointer && (!shader->isCompiled() || sourcePointer != shaderSource.c_str())) { cap(CaptureShaderSource(replayState, true, id, 1, &sourcePointer, nullptr)); } } // Capture Sampler Objects const gl::SamplerManager &samplers = apiState.getSamplerManagerForCapture(); for (const auto &samplerIter : samplers) { gl::SamplerID samplerID = {samplerIter.first}; // Don't gen the sampler if we've seen it before, since they are shared across the context // share group. cap(CaptureGenSamplers(replayState, true, 1, &samplerID)); MaybeCaptureUpdateResourceIDs(setupCalls); gl::Sampler *sampler = samplerIter.second; if (!sampler) { continue; } gl::SamplerState defaultSamplerState; if (sampler->getMinFilter() != defaultSamplerState.getMinFilter()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_MIN_FILTER, sampler->getMinFilter())); } if (sampler->getMagFilter() != defaultSamplerState.getMagFilter()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_MAG_FILTER, sampler->getMagFilter())); } if (sampler->getWrapS() != defaultSamplerState.getWrapS()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_S, sampler->getWrapS())); } if (sampler->getWrapR() != defaultSamplerState.getWrapR()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_R, sampler->getWrapR())); } if (sampler->getWrapT() != defaultSamplerState.getWrapT()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_T, sampler->getWrapT())); } if (sampler->getMinLod() != defaultSamplerState.getMinLod()) { cap(CaptureSamplerParameterf(replayState, true, samplerID, GL_TEXTURE_MIN_LOD, sampler->getMinLod())); } if (sampler->getMaxLod() != defaultSamplerState.getMaxLod()) { cap(CaptureSamplerParameterf(replayState, true, samplerID, GL_TEXTURE_MAX_LOD, sampler->getMaxLod())); } if (sampler->getCompareMode() != defaultSamplerState.getCompareMode()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_COMPARE_MODE, sampler->getCompareMode())); } if (sampler->getCompareFunc() != defaultSamplerState.getCompareFunc()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_COMPARE_FUNC, sampler->getCompareFunc())); } } // Capture Sync Objects const gl::SyncManager &syncs = apiState.getSyncManagerForCapture(); for (const auto &syncIter : syncs) { GLsync syncID = gl::bitCast(static_cast(syncIter.first)); const gl::Sync *sync = syncIter.second; if (!sync) { continue; } cap(CaptureFenceSync(replayState, true, sync->getCondition(), sync->getFlags(), syncID)); CaptureFenceSyncResetCalls(replayState, resourceTracker, syncID, sync); resourceTracker->getStartingFenceSyncs().insert(syncID); } // Allow the replayState object to be destroyed conveniently. replayState.setBufferBinding(context, gl::BufferBinding::Array, nullptr); } void CaptureMidExecutionSetup(const gl::Context *context, std::vector *setupCalls, ResourceTracker *resourceTracker) { const gl::State &apiState = context->getState(); gl::State replayState(nullptr, nullptr, nullptr, nullptr, nullptr, EGL_OPENGL_ES_API, context->getState().getClientVersion(), false, true, true, true, false, EGL_CONTEXT_PRIORITY_MEDIUM_IMG, apiState.hasProtectedContent()); // Small helper function to make the code more readable. auto cap = [setupCalls](CallCapture &&call) { setupCalls->emplace_back(std::move(call)); }; // Currently this code assumes we can use create-on-bind. It does not support 'Gen' usage. // TODO(jmadill): Use handle mapping for captured objects. http://anglebug.com/3662 // Vertex input states. Only handles GLES 2.0 states right now. // Must happen after buffer data initialization. // TODO(http://anglebug.com/3662): Complete state capture. // Capture default vertex attribs. Do not capture on GLES1. if (!context->isGLES1()) { CaptureDefaultVertexAttribs(replayState, apiState, setupCalls); } // Capture vertex array objects const gl::VertexArrayMap &vertexArrayMap = context->getVertexArraysForCapture(); gl::VertexArrayID boundVertexArrayID = {0}; for (const auto &vertexArrayIter : vertexArrayMap) { gl::VertexArrayID vertexArrayID = {vertexArrayIter.first}; if (vertexArrayID.value != 0) { cap(CaptureGenVertexArrays(replayState, true, 1, &vertexArrayID)); MaybeCaptureUpdateResourceIDs(setupCalls); } if (vertexArrayIter.second) { const gl::VertexArray *vertexArray = vertexArrayIter.second; // Bind the vertexArray (unless default) and populate it if (vertexArrayID.value != 0) { cap(CaptureBindVertexArray(replayState, true, vertexArrayID)); boundVertexArrayID = vertexArrayID; } CaptureVertexArrayData(setupCalls, context, vertexArray, &replayState); } } // Bind the current vertex array const gl::VertexArray *currentVertexArray = apiState.getVertexArray(); if (currentVertexArray->id() != boundVertexArrayID) { cap(CaptureBindVertexArray(replayState, true, currentVertexArray->id())); } // Capture indexed buffer bindings. const gl::BufferVector &uniformIndexedBuffers = apiState.getOffsetBindingPointerUniformBuffers(); const gl::BufferVector &atomicCounterIndexedBuffers = apiState.getOffsetBindingPointerAtomicCounterBuffers(); const gl::BufferVector &shaderStorageIndexedBuffers = apiState.getOffsetBindingPointerShaderStorageBuffers(); CaptureIndexedBuffers(replayState, uniformIndexedBuffers, gl::BufferBinding::Uniform, setupCalls); CaptureIndexedBuffers(replayState, atomicCounterIndexedBuffers, gl::BufferBinding::AtomicCounter, setupCalls); CaptureIndexedBuffers(replayState, shaderStorageIndexedBuffers, gl::BufferBinding::ShaderStorage, setupCalls); // Capture Buffer bindings. const gl::BoundBufferMap &boundBuffers = apiState.getBoundBuffersForCapture(); for (gl::BufferBinding binding : angle::AllEnums()) { gl::BufferID bufferID = boundBuffers[binding].id(); // Filter out redundant buffer binding commands. Note that the code in the previous section // only binds to ARRAY_BUFFER. Therefore we only check the array binding against the binding // we set earlier. bool isArray = binding == gl::BufferBinding::Array; const gl::Buffer *arrayBuffer = replayState.getArrayBuffer(); if ((isArray && arrayBuffer && arrayBuffer->id() != bufferID) || (!isArray && bufferID.value != 0)) { cap(CaptureBindBuffer(replayState, true, binding, bufferID)); } // Restore all buffer bindings for Reset if (bufferID.value != 0) { CaptureBufferBindingResetCalls(replayState, resourceTracker, binding, bufferID); } } // Set a unpack alignment of 1. gl::PixelUnpackState ¤tUnpackState = replayState.getUnpackState(); if (currentUnpackState.alignment != 1) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_ALIGNMENT, 1)); currentUnpackState.alignment = 1; } // Capture Texture setup and data. const gl::TextureBindingMap &boundTextures = apiState.getBoundTexturesForCapture(); // Set Texture bindings. size_t currentActiveTexture = 0; gl::TextureTypeMap currentTextureBindings; for (gl::TextureType textureType : angle::AllEnums()) { const gl::TextureBindingVector &bindings = boundTextures[textureType]; for (size_t bindingIndex = 0; bindingIndex < bindings.size(); ++bindingIndex) { gl::TextureID textureID = bindings[bindingIndex].id(); if (textureID.value != 0) { if (currentActiveTexture != bindingIndex) { cap(CaptureActiveTexture(replayState, true, GL_TEXTURE0 + static_cast(bindingIndex))); currentActiveTexture = bindingIndex; } if (currentTextureBindings[textureType] != textureID) { cap(CaptureBindTexture(replayState, true, textureType, textureID)); currentTextureBindings[textureType] = textureID; } } } } // Set active Texture. size_t stateActiveTexture = apiState.getActiveSampler(); if (currentActiveTexture != stateActiveTexture) { cap(CaptureActiveTexture(replayState, true, GL_TEXTURE0 + static_cast(stateActiveTexture))); } // Set Renderbuffer binding. const gl::RenderbufferManager &renderbuffers = apiState.getRenderbufferManagerForCapture(); gl::RenderbufferID currentRenderbuffer = {0}; for (const auto &renderbufIter : renderbuffers) { currentRenderbuffer = renderbufIter.second->id(); } if (currentRenderbuffer != apiState.getRenderbufferId()) { cap(CaptureBindRenderbuffer(replayState, true, GL_RENDERBUFFER, apiState.getRenderbufferId())); } // Capture Framebuffers. const gl::FramebufferManager &framebuffers = apiState.getFramebufferManagerForCapture(); gl::FramebufferID currentDrawFramebuffer = {0}; gl::FramebufferID currentReadFramebuffer = {0}; for (const auto &framebufferIter : framebuffers) { gl::FramebufferID id = {framebufferIter.first}; const gl::Framebuffer *framebuffer = framebufferIter.second; // The default Framebuffer exists (by default). if (framebuffer->isDefault()) { continue; } cap(CaptureGenFramebuffers(replayState, true, 1, &id)); MaybeCaptureUpdateResourceIDs(setupCalls); cap(CaptureBindFramebuffer(replayState, true, GL_FRAMEBUFFER, id)); currentDrawFramebuffer = currentReadFramebuffer = id; // Color Attachments. for (const gl::FramebufferAttachment &colorAttachment : framebuffer->getColorAttachments()) { if (!colorAttachment.isAttached()) { continue; } CaptureFramebufferAttachment(setupCalls, replayState, colorAttachment); } const gl::FramebufferAttachment *depthAttachment = framebuffer->getDepthAttachment(); if (depthAttachment) { ASSERT(depthAttachment->getBinding() == GL_DEPTH_ATTACHMENT || depthAttachment->getBinding() == GL_DEPTH_STENCIL_ATTACHMENT); CaptureFramebufferAttachment(setupCalls, replayState, *depthAttachment); } const gl::FramebufferAttachment *stencilAttachment = framebuffer->getStencilAttachment(); if (stencilAttachment) { ASSERT(stencilAttachment->getBinding() == GL_STENCIL_ATTACHMENT || depthAttachment->getBinding() == GL_DEPTH_STENCIL_ATTACHMENT); CaptureFramebufferAttachment(setupCalls, replayState, *stencilAttachment); } const std::vector &drawBufferStates = framebuffer->getDrawBufferStates(); cap(CaptureDrawBuffers(replayState, true, static_cast(drawBufferStates.size()), drawBufferStates.data())); } // Capture framebuffer bindings. gl::FramebufferID stateReadFramebuffer = apiState.getReadFramebuffer()->id(); gl::FramebufferID stateDrawFramebuffer = apiState.getDrawFramebuffer()->id(); if (stateDrawFramebuffer == stateReadFramebuffer) { if (currentDrawFramebuffer != stateDrawFramebuffer || currentReadFramebuffer != stateReadFramebuffer) { cap(CaptureBindFramebuffer(replayState, true, GL_FRAMEBUFFER, stateDrawFramebuffer)); currentDrawFramebuffer = currentReadFramebuffer = stateDrawFramebuffer; } } else { if (currentDrawFramebuffer != stateDrawFramebuffer) { cap(CaptureBindFramebuffer(replayState, true, GL_DRAW_FRAMEBUFFER, currentDrawFramebuffer)); currentDrawFramebuffer = stateDrawFramebuffer; } if (currentReadFramebuffer != stateReadFramebuffer) { cap(CaptureBindFramebuffer(replayState, true, GL_READ_FRAMEBUFFER, replayState.getReadFramebuffer()->id())); currentReadFramebuffer = stateReadFramebuffer; } } // Capture Program Pipelines const gl::ProgramPipelineManager *programPipelineManager = apiState.getProgramPipelineManagerForCapture(); for (const auto &ppoIterator : *programPipelineManager) { gl::ProgramPipeline *pipeline = ppoIterator.second; gl::ProgramPipelineID id = {ppoIterator.first}; cap(CaptureGenProgramPipelines(replayState, true, 1, &id)); MaybeCaptureUpdateResourceIDs(setupCalls); // PPOs can contain graphics and compute programs, so loop through all shader types rather // than just the linked ones since getLinkedShaderStages() will return either only graphics // or compute stages. for (gl::ShaderType shaderType : gl::AllShaderTypes()) { gl::Program *program = pipeline->getShaderProgram(shaderType); if (!program) { continue; } ASSERT(program->isLinked()); GLbitfield gLbitfield = GetBitfieldFromShaderType(shaderType); cap(CaptureUseProgramStages(replayState, true, pipeline->id(), gLbitfield, program->id())); } gl::Program *program = pipeline->getActiveShaderProgram(); if (program) { cap(CaptureActiveShaderProgram(replayState, true, id, program->id())); } } // For now we assume the installed program executable is the same as the current program. // TODO(jmadill): Handle installed program executable. http://anglebug.com/3662 if (apiState.getProgram() && !context->isGLES1()) { cap(CaptureUseProgram(replayState, true, apiState.getProgram()->id())); CaptureUpdateCurrentProgram(setupCalls->back(), setupCalls); } else if (apiState.getProgramPipeline()) { // glUseProgram() is called above to update the necessary uniform values for each program // that's being recreated. If there is no program currently bound, then we need to unbind // the last bound program so the PPO will be used instead: // 7.4 Program Pipeline Objects // If no current program object has been established by UseProgram, the program objects used // for each shader stage and for uniform updates are taken from the bound program pipeline // object, if any. If there is a current program object established by UseProgram, the bound // program pipeline object has no effect on rendering or uniform updates. cap(CaptureUseProgram(replayState, true, {0})); CaptureUpdateCurrentProgram(setupCalls->back(), setupCalls); cap(CaptureBindProgramPipeline(replayState, true, apiState.getProgramPipeline()->id())); } // TODO(http://anglebug.com/3662): ES 3.x objects. // Create existing queries. Note that queries may be genned and not yet started. In that // case the queries will exist in the query map as nullptr entries. const gl::QueryMap &queryMap = context->getQueriesForCapture(); for (gl::QueryMap::Iterator queryIter = queryMap.beginWithNull(); queryIter != queryMap.endWithNull(); ++queryIter) { ASSERT(queryIter->first); gl::QueryID queryID = {queryIter->first}; cap(CaptureGenQueries(replayState, true, 1, &queryID)); MaybeCaptureUpdateResourceIDs(setupCalls); gl::Query *query = queryIter->second; if (query) { gl::QueryType queryType = query->getType(); // Begin the query to generate the object cap(CaptureBeginQuery(replayState, true, queryType, queryID)); // End the query if it was not active if (!IsQueryActive(apiState, queryID)) { cap(CaptureEndQuery(replayState, true, queryType)); } } } // Transform Feedback const gl::TransformFeedbackMap &xfbMap = context->getTransformFeedbacksForCapture(); for (const auto &xfbIter : xfbMap) { gl::TransformFeedbackID xfbID = {xfbIter.first}; // Do not capture the default XFB object. if (xfbID.value == 0) { continue; } cap(CaptureGenTransformFeedbacks(replayState, true, 1, &xfbID)); MaybeCaptureUpdateResourceIDs(setupCalls); gl::TransformFeedback *xfb = xfbIter.second; if (!xfb) { // The object was never created continue; } // Bind XFB to create the object cap(CaptureBindTransformFeedback(replayState, true, GL_TRANSFORM_FEEDBACK, xfbID)); // Bind the buffers associated with this XFB object for (size_t i = 0; i < xfb->getIndexedBufferCount(); ++i) { const gl::OffsetBindingPointer &xfbBuffer = xfb->getIndexedBuffer(i); // Note: Buffers bound with BindBufferBase can be used with BindBuffer cap(CaptureBindBufferRange(replayState, true, gl::BufferBinding::TransformFeedback, 0, xfbBuffer.id(), xfbBuffer.getOffset(), xfbBuffer.getSize())); } if (xfb->isActive() || xfb->isPaused()) { // We don't support active XFB in MEC yet UNIMPLEMENTED(); } } // Bind the current XFB buffer after populating XFB objects gl::TransformFeedback *currentXFB = apiState.getCurrentTransformFeedback(); if (currentXFB) { cap(CaptureBindTransformFeedback(replayState, true, GL_TRANSFORM_FEEDBACK, currentXFB->id())); } // Bind samplers const gl::SamplerBindingVector &samplerBindings = apiState.getSamplers(); for (GLuint bindingIndex = 0; bindingIndex < static_cast(samplerBindings.size()); ++bindingIndex) { gl::SamplerID samplerID = samplerBindings[bindingIndex].id(); if (samplerID.value != 0) { cap(CaptureBindSampler(replayState, true, bindingIndex, samplerID)); } } // Capture Image Texture bindings const std::vector &imageUnits = apiState.getImageUnits(); for (GLuint bindingIndex = 0; bindingIndex < static_cast(imageUnits.size()); ++bindingIndex) { const gl::ImageUnit &imageUnit = imageUnits[bindingIndex]; if (imageUnit.texture == 0) { continue; } cap(CaptureBindImageTexture(replayState, true, bindingIndex, imageUnit.texture.id(), imageUnit.level, imageUnit.layered, imageUnit.layer, imageUnit.access, imageUnit.format)); } // Capture GL Context states. // TODO(http://anglebug.com/3662): Complete state capture. auto capCap = [cap, &replayState](GLenum capEnum, bool capValue) { if (capValue) { cap(CaptureEnable(replayState, true, capEnum)); } else { cap(CaptureDisable(replayState, true, capEnum)); } }; // Capture GLES1 context states. if (context->isGLES1()) { const bool currentTextureState = apiState.getEnableFeature(GL_TEXTURE_2D); const bool defaultTextureState = replayState.getEnableFeature(GL_TEXTURE_2D); if (currentTextureState != defaultTextureState) { capCap(GL_TEXTURE_2D, currentTextureState); } } // Rasterizer state. Missing ES 3.x features. const gl::RasterizerState &defaultRasterState = replayState.getRasterizerState(); const gl::RasterizerState ¤tRasterState = apiState.getRasterizerState(); if (currentRasterState.cullFace != defaultRasterState.cullFace) { capCap(GL_CULL_FACE, currentRasterState.cullFace); } if (currentRasterState.cullMode != defaultRasterState.cullMode) { cap(CaptureCullFace(replayState, true, currentRasterState.cullMode)); } if (currentRasterState.frontFace != defaultRasterState.frontFace) { cap(CaptureFrontFace(replayState, true, currentRasterState.frontFace)); } if (currentRasterState.polygonOffsetFill != defaultRasterState.polygonOffsetFill) { capCap(GL_POLYGON_OFFSET_FILL, currentRasterState.polygonOffsetFill); } if (currentRasterState.polygonOffsetFactor != defaultRasterState.polygonOffsetFactor || currentRasterState.polygonOffsetUnits != defaultRasterState.polygonOffsetUnits) { cap(CapturePolygonOffset(replayState, true, currentRasterState.polygonOffsetFactor, currentRasterState.polygonOffsetUnits)); } // pointDrawMode/multiSample are only used in the D3D back-end right now. if (currentRasterState.rasterizerDiscard != defaultRasterState.rasterizerDiscard) { capCap(GL_RASTERIZER_DISCARD, currentRasterState.rasterizerDiscard); } if (currentRasterState.dither != defaultRasterState.dither) { capCap(GL_DITHER, currentRasterState.dither); } // Depth/stencil state. const gl::DepthStencilState &defaultDSState = replayState.getDepthStencilState(); const gl::DepthStencilState ¤tDSState = apiState.getDepthStencilState(); if (defaultDSState.depthFunc != currentDSState.depthFunc) { cap(CaptureDepthFunc(replayState, true, currentDSState.depthFunc)); } if (defaultDSState.depthMask != currentDSState.depthMask) { cap(CaptureDepthMask(replayState, true, gl::ConvertToGLBoolean(currentDSState.depthMask))); } if (defaultDSState.depthTest != currentDSState.depthTest) { capCap(GL_DEPTH_TEST, currentDSState.depthTest); } if (defaultDSState.stencilTest != currentDSState.stencilTest) { capCap(GL_STENCIL_TEST, currentDSState.stencilTest); } if (currentDSState.stencilFunc == currentDSState.stencilBackFunc && currentDSState.stencilMask == currentDSState.stencilBackMask) { // Front and back are equal if (defaultDSState.stencilFunc != currentDSState.stencilFunc || defaultDSState.stencilMask != currentDSState.stencilMask || apiState.getStencilRef() != 0) { cap(CaptureStencilFunc(replayState, true, currentDSState.stencilFunc, apiState.getStencilRef(), currentDSState.stencilMask)); } } else { // Front and back are separate if (defaultDSState.stencilFunc != currentDSState.stencilFunc || defaultDSState.stencilMask != currentDSState.stencilMask || apiState.getStencilRef() != 0) { cap(CaptureStencilFuncSeparate(replayState, true, GL_FRONT, currentDSState.stencilFunc, apiState.getStencilRef(), currentDSState.stencilMask)); } if (defaultDSState.stencilBackFunc != currentDSState.stencilBackFunc || defaultDSState.stencilBackMask != currentDSState.stencilBackMask || apiState.getStencilBackRef() != 0) { cap(CaptureStencilFuncSeparate( replayState, true, GL_BACK, currentDSState.stencilBackFunc, apiState.getStencilBackRef(), currentDSState.stencilBackMask)); } } if (currentDSState.stencilFail == currentDSState.stencilBackFail && currentDSState.stencilPassDepthFail == currentDSState.stencilBackPassDepthFail && currentDSState.stencilPassDepthPass == currentDSState.stencilBackPassDepthPass) { // Front and back are equal if (defaultDSState.stencilFail != currentDSState.stencilFail || defaultDSState.stencilPassDepthFail != currentDSState.stencilPassDepthFail || defaultDSState.stencilPassDepthPass != currentDSState.stencilPassDepthPass) { cap(CaptureStencilOp(replayState, true, currentDSState.stencilFail, currentDSState.stencilPassDepthFail, currentDSState.stencilPassDepthPass)); } } else { // Front and back are separate if (defaultDSState.stencilFail != currentDSState.stencilFail || defaultDSState.stencilPassDepthFail != currentDSState.stencilPassDepthFail || defaultDSState.stencilPassDepthPass != currentDSState.stencilPassDepthPass) { cap(CaptureStencilOpSeparate(replayState, true, GL_FRONT, currentDSState.stencilFail, currentDSState.stencilPassDepthFail, currentDSState.stencilPassDepthPass)); } if (defaultDSState.stencilBackFail != currentDSState.stencilBackFail || defaultDSState.stencilBackPassDepthFail != currentDSState.stencilBackPassDepthFail || defaultDSState.stencilBackPassDepthPass != currentDSState.stencilBackPassDepthPass) { cap(CaptureStencilOpSeparate(replayState, true, GL_BACK, currentDSState.stencilBackFail, currentDSState.stencilBackPassDepthFail, currentDSState.stencilBackPassDepthPass)); } } if (currentDSState.stencilWritemask == currentDSState.stencilBackWritemask) { // Front and back are equal if (defaultDSState.stencilWritemask != currentDSState.stencilWritemask) { cap(CaptureStencilMask(replayState, true, currentDSState.stencilWritemask)); } } else { // Front and back are separate if (defaultDSState.stencilWritemask != currentDSState.stencilWritemask) { cap(CaptureStencilMaskSeparate(replayState, true, GL_FRONT, currentDSState.stencilWritemask)); } if (defaultDSState.stencilBackWritemask != currentDSState.stencilBackWritemask) { cap(CaptureStencilMaskSeparate(replayState, true, GL_BACK, currentDSState.stencilBackWritemask)); } } // Blend state. const gl::BlendState &defaultBlendState = replayState.getBlendState(); const gl::BlendState ¤tBlendState = apiState.getBlendState(); if (currentBlendState.blend != defaultBlendState.blend) { capCap(GL_BLEND, currentBlendState.blend); } if (currentBlendState.sourceBlendRGB != defaultBlendState.sourceBlendRGB || currentBlendState.destBlendRGB != defaultBlendState.destBlendRGB || currentBlendState.sourceBlendAlpha != defaultBlendState.sourceBlendAlpha || currentBlendState.destBlendAlpha != defaultBlendState.destBlendAlpha) { if (currentBlendState.sourceBlendRGB == currentBlendState.sourceBlendAlpha && currentBlendState.destBlendRGB == currentBlendState.destBlendAlpha) { // Color and alpha are equal cap(CaptureBlendFunc(replayState, true, currentBlendState.sourceBlendRGB, currentBlendState.destBlendRGB)); } else { // Color and alpha are separate cap(CaptureBlendFuncSeparate( replayState, true, currentBlendState.sourceBlendRGB, currentBlendState.destBlendRGB, currentBlendState.sourceBlendAlpha, currentBlendState.destBlendAlpha)); } } if (currentBlendState.blendEquationRGB != defaultBlendState.blendEquationRGB || currentBlendState.blendEquationAlpha != defaultBlendState.blendEquationAlpha) { cap(CaptureBlendEquationSeparate(replayState, true, currentBlendState.blendEquationRGB, currentBlendState.blendEquationAlpha)); } if (currentBlendState.colorMaskRed != defaultBlendState.colorMaskRed || currentBlendState.colorMaskGreen != defaultBlendState.colorMaskGreen || currentBlendState.colorMaskBlue != defaultBlendState.colorMaskBlue || currentBlendState.colorMaskAlpha != defaultBlendState.colorMaskAlpha) { cap(CaptureColorMask(replayState, true, gl::ConvertToGLBoolean(currentBlendState.colorMaskRed), gl::ConvertToGLBoolean(currentBlendState.colorMaskGreen), gl::ConvertToGLBoolean(currentBlendState.colorMaskBlue), gl::ConvertToGLBoolean(currentBlendState.colorMaskAlpha))); } const gl::ColorF ¤tBlendColor = apiState.getBlendColor(); if (currentBlendColor != gl::ColorF()) { cap(CaptureBlendColor(replayState, true, currentBlendColor.red, currentBlendColor.green, currentBlendColor.blue, currentBlendColor.alpha)); } // Pixel storage states. gl::PixelPackState ¤tPackState = replayState.getPackState(); if (currentPackState.alignment != apiState.getPackAlignment()) { cap(CapturePixelStorei(replayState, true, GL_PACK_ALIGNMENT, apiState.getPackAlignment())); currentPackState.alignment = apiState.getPackAlignment(); } if (currentPackState.rowLength != apiState.getPackRowLength()) { cap(CapturePixelStorei(replayState, true, GL_PACK_ROW_LENGTH, apiState.getPackRowLength())); currentPackState.rowLength = apiState.getPackRowLength(); } if (currentPackState.skipRows != apiState.getPackSkipRows()) { cap(CapturePixelStorei(replayState, true, GL_PACK_SKIP_ROWS, apiState.getPackSkipRows())); currentPackState.skipRows = apiState.getPackSkipRows(); } if (currentPackState.skipPixels != apiState.getPackSkipPixels()) { cap(CapturePixelStorei(replayState, true, GL_PACK_SKIP_PIXELS, apiState.getPackSkipPixels())); currentPackState.skipPixels = apiState.getPackSkipPixels(); } // We set unpack alignment above, no need to change it here ASSERT(currentUnpackState.alignment == 1); if (currentUnpackState.rowLength != apiState.getUnpackRowLength()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_ROW_LENGTH, apiState.getUnpackRowLength())); currentUnpackState.rowLength = apiState.getUnpackRowLength(); } if (currentUnpackState.skipRows != apiState.getUnpackSkipRows()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_ROWS, apiState.getUnpackSkipRows())); currentUnpackState.skipRows = apiState.getUnpackSkipRows(); } if (currentUnpackState.skipPixels != apiState.getUnpackSkipPixels()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_PIXELS, apiState.getUnpackSkipPixels())); currentUnpackState.skipPixels = apiState.getUnpackSkipPixels(); } if (currentUnpackState.imageHeight != apiState.getUnpackImageHeight()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_IMAGE_HEIGHT, apiState.getUnpackImageHeight())); currentUnpackState.imageHeight = apiState.getUnpackImageHeight(); } if (currentUnpackState.skipImages != apiState.getUnpackSkipImages()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_IMAGES, apiState.getUnpackSkipImages())); currentUnpackState.skipImages = apiState.getUnpackSkipImages(); } // Clear state. Missing ES 3.x features. // TODO(http://anglebug.com/3662): Complete state capture. const gl::ColorF ¤tClearColor = apiState.getColorClearValue(); if (currentClearColor != gl::ColorF()) { cap(CaptureClearColor(replayState, true, currentClearColor.red, currentClearColor.green, currentClearColor.blue, currentClearColor.alpha)); } if (apiState.getDepthClearValue() != 1.0f) { cap(CaptureClearDepthf(replayState, true, apiState.getDepthClearValue())); } if (apiState.getStencilClearValue() != 0) { cap(CaptureClearStencil(replayState, true, apiState.getStencilClearValue())); } // Viewport / scissor / clipping planes. const gl::Rectangle ¤tViewport = apiState.getViewport(); if (currentViewport != gl::Rectangle()) { cap(CaptureViewport(replayState, true, currentViewport.x, currentViewport.y, currentViewport.width, currentViewport.height)); } if (apiState.getNearPlane() != 0.0f || apiState.getFarPlane() != 1.0f) { cap(CaptureDepthRangef(replayState, true, apiState.getNearPlane(), apiState.getFarPlane())); } if (apiState.isScissorTestEnabled()) { capCap(GL_SCISSOR_TEST, apiState.isScissorTestEnabled()); } const gl::Rectangle ¤tScissor = apiState.getScissor(); if (currentScissor != gl::Rectangle()) { cap(CaptureScissor(replayState, true, currentScissor.x, currentScissor.y, currentScissor.width, currentScissor.height)); } // Allow the replayState object to be destroyed conveniently. replayState.setBufferBinding(context, gl::BufferBinding::Array, nullptr); } bool SkipCall(EntryPoint entryPoint) { switch (entryPoint) { case EntryPoint::GLDebugMessageCallback: case EntryPoint::GLDebugMessageCallbackKHR: case EntryPoint::GLDebugMessageControl: case EntryPoint::GLDebugMessageControlKHR: case EntryPoint::GLDebugMessageInsert: case EntryPoint::GLDebugMessageInsertKHR: case EntryPoint::GLGetDebugMessageLog: case EntryPoint::GLGetDebugMessageLogKHR: case EntryPoint::GLGetObjectLabelEXT: case EntryPoint::GLGetObjectLabelKHR: case EntryPoint::GLGetObjectPtrLabelKHR: case EntryPoint::GLGetPointervKHR: case EntryPoint::GLInsertEventMarkerEXT: case EntryPoint::GLLabelObjectEXT: case EntryPoint::GLObjectLabelKHR: case EntryPoint::GLObjectPtrLabelKHR: case EntryPoint::GLPopDebugGroupKHR: case EntryPoint::GLPopGroupMarkerEXT: case EntryPoint::GLPushDebugGroupKHR: case EntryPoint::GLPushGroupMarkerEXT: // Purposefully skip entry points from: // - KHR_debug // - EXT_debug_label // - EXT_debug_marker // There is no need to capture these for replaying a trace in our harness return true; case EntryPoint::GLGetActiveUniform: case EntryPoint::GLGetActiveUniformsiv: // Skip these calls because: // - We don't use the return values. // - Active uniform counts can vary between platforms due to cross stage optimizations // and asking about uniforms above GL_ACTIVE_UNIFORMS triggers errors. return true; default: break; } return false; } bool FindShaderProgramIDInCall(const CallCapture &call, gl::ShaderProgramID *idOut) { for (const ParamCapture ¶m : call.params.getParamCaptures()) { if (param.type == ParamType::TShaderProgramID && param.name == "programPacked") { *idOut = param.value.ShaderProgramIDVal; return true; } } return false; } GLint GetAdjustedTextureCacheLevel(gl::TextureTarget target, GLint level) { GLint adjustedLevel = level; // If target is a cube, we need to maintain 6 images per level if (IsCubeMapFaceTarget(target)) { adjustedLevel *= 6; adjustedLevel += CubeMapTextureTargetToFaceIndex(target); } return adjustedLevel; } } // namespace ParamCapture::ParamCapture() : type(ParamType::TGLenum), enumGroup(gl::GLenumGroup::DefaultGroup) {} ParamCapture::ParamCapture(const char *nameIn, ParamType typeIn) : name(nameIn), type(typeIn), enumGroup(gl::GLenumGroup::DefaultGroup) {} ParamCapture::~ParamCapture() = default; ParamCapture::ParamCapture(ParamCapture &&other) : type(ParamType::TGLenum), enumGroup(gl::GLenumGroup::DefaultGroup) { *this = std::move(other); } ParamCapture &ParamCapture::operator=(ParamCapture &&other) { std::swap(name, other.name); std::swap(type, other.type); std::swap(value, other.value); std::swap(enumGroup, other.enumGroup); std::swap(data, other.data); std::swap(arrayClientPointerIndex, other.arrayClientPointerIndex); std::swap(readBufferSizeBytes, other.readBufferSizeBytes); std::swap(dataNElements, other.dataNElements); return *this; } ParamBuffer::ParamBuffer() {} ParamBuffer::~ParamBuffer() = default; ParamBuffer::ParamBuffer(ParamBuffer &&other) { *this = std::move(other); } ParamBuffer &ParamBuffer::operator=(ParamBuffer &&other) { std::swap(mParamCaptures, other.mParamCaptures); std::swap(mClientArrayDataParam, other.mClientArrayDataParam); std::swap(mReadBufferSize, other.mReadBufferSize); std::swap(mReturnValueCapture, other.mReturnValueCapture); std::swap(mMappedBufferID, other.mMappedBufferID); return *this; } ParamCapture &ParamBuffer::getParam(const char *paramName, ParamType paramType, int index) { ParamCapture &capture = mParamCaptures[index]; ASSERT(capture.name == paramName); ASSERT(capture.type == paramType); return capture; } const ParamCapture &ParamBuffer::getParam(const char *paramName, ParamType paramType, int index) const { return const_cast(this)->getParam(paramName, paramType, index); } ParamCapture &ParamBuffer::getParamFlexName(const char *paramName1, const char *paramName2, ParamType paramType, int index) { ParamCapture &capture = mParamCaptures[index]; ASSERT(capture.name == paramName1 || capture.name == paramName2); ASSERT(capture.type == paramType); return capture; } const ParamCapture &ParamBuffer::getParamFlexName(const char *paramName1, const char *paramName2, ParamType paramType, int index) const { return const_cast(this)->getParamFlexName(paramName1, paramName2, paramType, index); } void ParamBuffer::addParam(ParamCapture &¶m) { if (param.arrayClientPointerIndex != -1) { ASSERT(mClientArrayDataParam == -1); mClientArrayDataParam = static_cast(mParamCaptures.size()); } mReadBufferSize = std::max(param.readBufferSizeBytes, mReadBufferSize); mParamCaptures.emplace_back(std::move(param)); } void ParamBuffer::addReturnValue(ParamCapture &&returnValue) { mReturnValueCapture = std::move(returnValue); } ParamCapture &ParamBuffer::getClientArrayPointerParameter() { ASSERT(hasClientArrayData()); return mParamCaptures[mClientArrayDataParam]; } CallCapture::CallCapture(EntryPoint entryPointIn, ParamBuffer &¶msIn) : entryPoint(entryPointIn), params(std::move(paramsIn)) {} CallCapture::CallCapture(const std::string &customFunctionNameIn, ParamBuffer &¶msIn) : entryPoint(EntryPoint::GLInvalid), customFunctionName(customFunctionNameIn), params(std::move(paramsIn)) {} CallCapture::~CallCapture() = default; CallCapture::CallCapture(CallCapture &&other) { *this = std::move(other); } CallCapture &CallCapture::operator=(CallCapture &&other) { std::swap(entryPoint, other.entryPoint); std::swap(customFunctionName, other.customFunctionName); std::swap(params, other.params); return *this; } const char *CallCapture::name() const { if (entryPoint == EntryPoint::GLInvalid) { ASSERT(!customFunctionName.empty()); return customFunctionName.c_str(); } return angle::GetEntryPointName(entryPoint); } ReplayContext::ReplayContext(size_t readBufferSizebytes, const gl::AttribArray &clientArraysSizebytes) { mReadBuffer.resize(readBufferSizebytes); for (uint32_t i = 0; i < clientArraysSizebytes.size(); i++) { mClientArraysBuffer[i].resize(clientArraysSizebytes[i]); } } ReplayContext::~ReplayContext() {} FrameCapture::FrameCapture() = default; FrameCapture::~FrameCapture() = default; void FrameCapture::reset() { mSetupCalls.clear(); } FrameCaptureShared::FrameCaptureShared() : mEnabled(true), mSerializeStateEnabled(false), mCompression(true), mClientVertexArrayMap{}, mFrameIndex(1), mCaptureStartFrame(1), mCaptureEndFrame(10), mClientArraySizes{}, mReadBufferSize(0), mHasResourceType{}, mCaptureTrigger(0), mWindowSurfaceContextID({0}) { reset(); std::string enabledFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kEnabledVarName, kAndroidCaptureEnabled); if (enabledFromEnv == "0") { mEnabled = false; } std::string pathFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kOutDirectoryVarName, kAndroidOutDir); if (pathFromEnv.empty()) { mOutDirectory = GetDefaultOutDirectory(); } else { mOutDirectory = pathFromEnv; } // Ensure the capture path ends with a slash. if (mOutDirectory.back() != '\\' && mOutDirectory.back() != '/') { mOutDirectory += '/'; } std::string startFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kFrameStartVarName, kAndroidFrameStart); if (!startFromEnv.empty()) { mCaptureStartFrame = atoi(startFromEnv.c_str()); } std::string endFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kFrameEndVarName, kAndroidFrameEnd); if (!endFromEnv.empty()) { mCaptureEndFrame = atoi(endFromEnv.c_str()); } std::string captureTriggerFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kCaptureTriggerVarName, kAndroidCaptureTrigger); if (!captureTriggerFromEnv.empty()) { mCaptureTrigger = atoi(captureTriggerFromEnv.c_str()); // If the trigger has been populated, ignore the other frame range variables by setting them // to unreasonable values. This isn't perfect, but it is effective. mCaptureStartFrame = mCaptureEndFrame = std::numeric_limits::max(); INFO() << "Capture trigger detected, disabling capture start/end frame."; } std::string labelFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kCaptureLabel, kAndroidCaptureLabel); if (!labelFromEnv.empty()) { // Optional label to provide unique file names and namespaces mCaptureLabel = labelFromEnv; } std::string compressionFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kCompression, kAndroidCompression); if (compressionFromEnv == "0") { mCompression = false; } std::string serializeStateEnabledFromEnv = angle::GetEnvironmentVar(kSerializeStateEnabledVarName); if (serializeStateEnabledFromEnv == "1") { mSerializeStateEnabled = true; } } FrameCaptureShared::~FrameCaptureShared() = default; void FrameCaptureShared::copyCompressedTextureData(const gl::Context *context, const CallCapture &call) { // For compressed textures, we need to copy the source data that was already captured into a new // cached texture entry for use during mid-execution capture, rather than reading it back with // ANGLE_get_image. GLenum srcTarget = call.params.getParam("srcTarget", ParamType::TGLenum, 1).value.GLenumVal; GLenum dstTarget = call.params.getParam("dstTarget", ParamType::TGLenum, 7).value.GLenumVal; // TODO(anglebug.com/6104): Type of incoming ID varies based on target type, but we're only // handling textures for now. If either of these asserts fire, then we need to add renderbuffer // support. ASSERT(srcTarget == GL_TEXTURE_2D || srcTarget == GL_TEXTURE_2D_ARRAY || srcTarget == GL_TEXTURE_3D || srcTarget == GL_TEXTURE_CUBE_MAP); ASSERT(dstTarget == GL_TEXTURE_2D || dstTarget == GL_TEXTURE_2D_ARRAY || dstTarget == GL_TEXTURE_3D || dstTarget == GL_TEXTURE_CUBE_MAP); gl::TextureID srcName = call.params.getParam("srcName", ParamType::TTextureID, 0).value.TextureIDVal; GLint srcLevel = call.params.getParam("srcLevel", ParamType::TGLint, 2).value.GLintVal; gl::TextureID dstName = call.params.getParam("dstName", ParamType::TTextureID, 6).value.TextureIDVal; GLint dstLevel = call.params.getParam("dstLevel", ParamType::TGLint, 8).value.GLintVal; // Look up the texture type gl::TextureTarget dstTargetPacked = gl::PackParam(dstTarget); gl::TextureType dstTextureType = gl::TextureTargetToType(dstTargetPacked); // Look up the currently bound texture gl::Texture *dstTexture = context->getState().getTargetTexture(dstTextureType); ASSERT(dstTexture); const gl::InternalFormat &dstFormat = *dstTexture->getFormat(dstTargetPacked, dstLevel).info; if (dstFormat.compressed) { context->getShareGroup()->getFrameCaptureShared()->copyCachedTextureLevel( context, srcName, srcLevel, dstName, dstLevel, call); } } void FrameCaptureShared::captureCompressedTextureData(const gl::Context *context, const CallCapture &call) { // For compressed textures, track a shadow copy of the data // for use during mid-execution capture, rather than reading it back // with ANGLE_get_image // Storing the compressed data is handled the same for all entry points, // they just have slightly different parameter locations int dataParamOffset = -1; int xoffsetParamOffset = -1; int yoffsetParamOffset = -1; int zoffsetParamOffset = -1; int widthParamOffset = -1; int heightParamOffset = -1; int depthParamOffset = -1; switch (call.entryPoint) { case EntryPoint::GLCompressedTexSubImage3D: xoffsetParamOffset = 2; yoffsetParamOffset = 3; zoffsetParamOffset = 4; widthParamOffset = 5; heightParamOffset = 6; depthParamOffset = 7; dataParamOffset = 10; break; case EntryPoint::GLCompressedTexImage3D: widthParamOffset = 3; heightParamOffset = 4; depthParamOffset = 5; dataParamOffset = 8; break; case EntryPoint::GLCompressedTexSubImage2D: xoffsetParamOffset = 2; yoffsetParamOffset = 3; widthParamOffset = 4; heightParamOffset = 5; dataParamOffset = 8; break; case EntryPoint::GLCompressedTexImage2D: widthParamOffset = 3; heightParamOffset = 4; dataParamOffset = 7; break; default: // There should be no other callers of this function ASSERT(0); break; } gl::Buffer *pixelUnpackBuffer = context->getState().getTargetBuffer(gl::BufferBinding::PixelUnpack); const uint8_t *data = static_cast( call.params.getParam("data", ParamType::TvoidConstPointer, dataParamOffset) .value.voidConstPointerVal); GLsizei imageSize = call.params.getParam("imageSize", ParamType::TGLsizei, dataParamOffset - 1) .value.GLsizeiVal; const uint8_t *pixelData = nullptr; if (pixelUnpackBuffer) { // If using pixel unpack buffer, map the buffer and track its data ASSERT(!pixelUnpackBuffer->isMapped()); (void)pixelUnpackBuffer->mapRange(context, reinterpret_cast(data), imageSize, GL_MAP_READ_BIT); pixelData = reinterpret_cast(pixelUnpackBuffer->getMapPointer()); } else { pixelData = data; } if (!pixelData) { // If no pointer was provided and we weren't able to map the buffer, there is no data to // capture return; } // Look up the texture type gl::TextureTarget targetPacked = call.params.getParam("targetPacked", ParamType::TTextureTarget, 0).value.TextureTargetVal; gl::TextureType textureType = gl::TextureTargetToType(targetPacked); // Create a copy of the incoming data std::vector compressedData; compressedData.assign(pixelData, pixelData + imageSize); // Look up the currently bound texture gl::Texture *texture = context->getState().getTargetTexture(textureType); ASSERT(texture); // Record the data, indexed by textureID and level GLint level = call.params.getParam("level", ParamType::TGLint, 1).value.GLintVal; std::vector &levelData = context->getShareGroup()->getFrameCaptureShared()->getCachedTextureLevelData( texture, targetPacked, level, call.entryPoint); // Unpack the various pixel rectangle parameters. ASSERT(widthParamOffset != -1); ASSERT(heightParamOffset != -1); GLsizei pixelWidth = call.params.getParam("width", ParamType::TGLsizei, widthParamOffset).value.GLsizeiVal; GLsizei pixelHeight = call.params.getParam("height", ParamType::TGLsizei, heightParamOffset).value.GLsizeiVal; GLsizei pixelDepth = 1; if (depthParamOffset != -1) { pixelDepth = call.params.getParam("depth", ParamType::TGLsizei, depthParamOffset).value.GLsizeiVal; } GLint xoffset = 0; GLint yoffset = 0; GLint zoffset = 0; if (xoffsetParamOffset != -1) { xoffset = call.params.getParam("xoffset", ParamType::TGLint, xoffsetParamOffset).value.GLintVal; } if (yoffsetParamOffset != -1) { yoffset = call.params.getParam("yoffset", ParamType::TGLint, yoffsetParamOffset).value.GLintVal; } if (zoffsetParamOffset != -1) { zoffset = call.params.getParam("zoffset", ParamType::TGLint, zoffsetParamOffset).value.GLintVal; } // Get the format of the texture for use with the compressed block size math. const gl::InternalFormat &format = *texture->getFormat(targetPacked, level).info; // Divide dimensions according to block size. const gl::Extents &levelExtents = texture->getExtents(targetPacked, level); // Scale down the width/height pixel offsets to reflect block size int blockWidth = static_cast(format.compressedBlockWidth); int blockHeight = static_cast(format.compressedBlockHeight); ASSERT(format.compressedBlockDepth == 1); // Round the incoming width and height up to align with block size pixelWidth = rx::roundUp(pixelWidth, blockWidth); pixelHeight = rx::roundUp(pixelHeight, blockHeight); // Scale the width, height, and offsets pixelWidth /= blockWidth; pixelHeight /= blockHeight; xoffset /= blockWidth; yoffset /= blockHeight; GLint pixelBytes = static_cast(format.pixelBytes); // Also round the texture's width and height up to reflect block size int levelWidth = rx::roundUp(levelExtents.width, blockWidth); int levelHeight = rx::roundUp(levelExtents.height, blockHeight); GLint pixelRowPitch = pixelWidth * pixelBytes; GLint pixelDepthPitch = pixelRowPitch * pixelHeight; GLint levelRowPitch = (levelWidth / blockWidth) * pixelBytes; GLint levelDepthPitch = (levelHeight / blockHeight) * levelRowPitch; for (GLint zindex = 0; zindex < pixelDepth; ++zindex) { GLint z = zindex + zoffset; for (GLint yindex = 0; yindex < pixelHeight; ++yindex) { GLint y = yindex + yoffset; GLint pixelOffset = zindex * pixelDepthPitch + yindex * pixelRowPitch; GLint levelOffset = z * levelDepthPitch + y * levelRowPitch + xoffset * pixelBytes; ASSERT(static_cast(levelOffset + pixelRowPitch) <= levelData.size()); memcpy(&levelData[levelOffset], &pixelData[pixelOffset], pixelRowPitch); } } if (pixelUnpackBuffer) { GLboolean success; (void)pixelUnpackBuffer->unmap(context, &success); ASSERT(success); } } void FrameCaptureShared::trackBufferMapping(CallCapture *call, gl::BufferID id, GLintptr offset, GLsizeiptr length, bool writable) { // Track that the buffer was mapped mResourceTracker.setBufferMapped(id); if (writable) { // If this buffer was mapped writable, we don't have any visibility into what // happens to it. Therefore, remember the details about it, and we'll read it back // on Unmap to repopulate it during replay. mBufferDataMap[id] = std::make_pair(offset, length); // Track that this buffer was potentially modified mResourceTracker.setBufferModified(id); // Track the bufferID that was just mapped for use when writing return value call->params.setMappedBufferID(id); } } void FrameCaptureShared::updateCopyImageSubData(CallCapture &call) { // This call modifies srcName and dstName to no longer be object IDs (GLuint), but actual // packed types that can remapped using gTextureMap and gRenderbufferMap GLint srcName = call.params.getParam("srcName", ParamType::TGLuint, 0).value.GLuintVal; GLenum srcTarget = call.params.getParam("srcTarget", ParamType::TGLenum, 1).value.GLenumVal; switch (srcTarget) { case GL_RENDERBUFFER: { // Convert the GLuint to RenderbufferID gl::RenderbufferID srcRenderbufferID = {static_cast(srcName)}; call.params.setValueParamAtIndex("srcName", ParamType::TRenderbufferID, srcRenderbufferID, 0); break; } case GL_TEXTURE_2D: case GL_TEXTURE_2D_ARRAY: case GL_TEXTURE_3D: case GL_TEXTURE_CUBE_MAP: { // Convert the GLuint to TextureID gl::TextureID srcTextureID = {static_cast(srcName)}; call.params.setValueParamAtIndex("srcName", ParamType::TTextureID, srcTextureID, 0); break; } default: ERR() << "Unhandled srcTarget = " << srcTarget; UNREACHABLE(); break; } // Change dstName to the appropriate type based on dstTarget GLint dstName = call.params.getParam("dstName", ParamType::TGLuint, 6).value.GLuintVal; GLenum dstTarget = call.params.getParam("dstTarget", ParamType::TGLenum, 7).value.GLenumVal; switch (dstTarget) { case GL_RENDERBUFFER: { // Convert the GLuint to RenderbufferID gl::RenderbufferID dstRenderbufferID = {static_cast(dstName)}; call.params.setValueParamAtIndex("dstName", ParamType::TRenderbufferID, dstRenderbufferID, 6); break; } case GL_TEXTURE_2D: case GL_TEXTURE_2D_ARRAY: case GL_TEXTURE_3D: case GL_TEXTURE_CUBE_MAP: { // Convert the GLuint to TextureID gl::TextureID dstTextureID = {static_cast(dstName)}; call.params.setValueParamAtIndex("dstName", ParamType::TTextureID, dstTextureID, 6); break; } default: ERR() << "Unhandled dstTarget = " << dstTarget; UNREACHABLE(); break; } } void FrameCaptureShared::maybeOverrideEntryPoint(const gl::Context *context, CallCapture &call) { switch (call.entryPoint) { case EntryPoint::GLEGLImageTargetTexture2DOES: { // We don't support reading EGLImages. Instead, just pull from a tiny null texture. // TODO (anglebug.com/4964): Read back the image data and populate the texture. std::vector pixelData = {0, 0, 0, 0}; call = CaptureTexSubImage2D(context->getState(), true, gl::TextureTarget::_2D, 0, 0, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixelData.data()); break; } case EntryPoint::GLEGLImageTargetRenderbufferStorageOES: { UNIMPLEMENTED(); break; } case EntryPoint::GLCopyImageSubData: case EntryPoint::GLCopyImageSubDataEXT: case EntryPoint::GLCopyImageSubDataOES: { // We must look at the src and dst target types to determine which remap table to use updateCopyImageSubData(call); break; } default: break; } } void FrameCaptureShared::maybeCaptureDrawArraysClientData(const gl::Context *context, CallCapture &call, size_t instanceCount) { if (!context->getStateCache().hasAnyActiveClientAttrib()) { return; } // Get counts from paramBuffer. GLint firstVertex = call.params.getParamFlexName("first", "start", ParamType::TGLint, 1).value.GLintVal; GLsizei drawCount = call.params.getParam("count", ParamType::TGLsizei, 2).value.GLsizeiVal; captureClientArraySnapshot(context, firstVertex + drawCount, instanceCount); } void FrameCaptureShared::maybeCaptureDrawElementsClientData(const gl::Context *context, CallCapture &call, size_t instanceCount) { if (!context->getStateCache().hasAnyActiveClientAttrib()) { return; } // if the count is zero then the index evaluation is not valid and we wouldn't be drawing // anything anyway, so skip capturing GLsizei count = call.params.getParam("count", ParamType::TGLsizei, 1).value.GLsizeiVal; if (count == 0) { return; } gl::DrawElementsType drawElementsType = call.params.getParam("typePacked", ParamType::TDrawElementsType, 2) .value.DrawElementsTypeVal; const void *indices = call.params.getParam("indices", ParamType::TvoidConstPointer, 3).value.voidConstPointerVal; gl::IndexRange indexRange; bool restart = context->getState().isPrimitiveRestartEnabled(); gl::Buffer *elementArrayBuffer = context->getState().getVertexArray()->getElementArrayBuffer(); if (elementArrayBuffer) { size_t offset = reinterpret_cast(indices); (void)elementArrayBuffer->getIndexRange(context, drawElementsType, offset, count, restart, &indexRange); } else { ASSERT(indices); indexRange = gl::ComputeIndexRange(drawElementsType, indices, count, restart); } // index starts from 0 captureClientArraySnapshot(context, indexRange.end + 1, instanceCount); } void FrameCaptureShared::maybeCapturePreCallUpdates(const gl::Context *context, CallCapture &call) { switch (call.entryPoint) { case EntryPoint::GLVertexAttribPointer: case EntryPoint::GLVertexPointer: case EntryPoint::GLColorPointer: case EntryPoint::GLTexCoordPointer: case EntryPoint::GLNormalPointer: case EntryPoint::GLPointSizePointerOES: { // Get array location GLuint index = 0; if (call.entryPoint == EntryPoint::GLVertexAttribPointer) { index = call.params.getParam("index", ParamType::TGLuint, 0).value.GLuintVal; } else { gl::ClientVertexArrayType type; switch (call.entryPoint) { case EntryPoint::GLVertexPointer: type = gl::ClientVertexArrayType::Vertex; break; case EntryPoint::GLColorPointer: type = gl::ClientVertexArrayType::Color; break; case EntryPoint::GLTexCoordPointer: type = gl::ClientVertexArrayType::TextureCoord; break; case EntryPoint::GLNormalPointer: type = gl::ClientVertexArrayType::Normal; break; case EntryPoint::GLPointSizePointerOES: type = gl::ClientVertexArrayType::PointSize; break; default: UNREACHABLE(); type = gl::ClientVertexArrayType::InvalidEnum; } index = gl::GLES1Renderer::VertexArrayIndex(type, context->getState().gles1()); } if (call.params.hasClientArrayData()) { mClientVertexArrayMap[index] = static_cast(mFrameCalls.size()); } else { mClientVertexArrayMap[index] = -1; } break; } case EntryPoint::GLDeleteBuffers: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::BufferID *bufferIDs = call.params.getParam("buffersPacked", ParamType::TBufferIDConstPointer, 1) .value.BufferIDConstPointerVal; FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); ResourceTracker &resourceTracker = context->getFrameCaptureSharedResourceTracker(); for (GLsizei i = 0; i < count; i++) { // For each buffer being deleted, check our backup of data and remove it const auto &bufferDataInfo = mBufferDataMap.find(bufferIDs[i]); if (bufferDataInfo != mBufferDataMap.end()) { mBufferDataMap.erase(bufferDataInfo); } // If we're capturing, track what buffers have been deleted if (frameCaptureShared->isCaptureActive()) { resourceTracker.setDeletedBuffer(bufferIDs[i]); } } break; } case EntryPoint::GLGenBuffers: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::BufferID *bufferIDs = call.params.getParam("buffersPacked", ParamType::TBufferIDPointer, 1) .value.BufferIDPointerVal; FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); ResourceTracker &resourceTracker = context->getFrameCaptureSharedResourceTracker(); for (GLsizei i = 0; i < count; i++) { // If we're capturing, track what new buffers have been genned if (frameCaptureShared->isCaptureActive()) { resourceTracker.setGennedBuffer(bufferIDs[i]); } } break; } case EntryPoint::GLDeleteSync: { GLsync sync = call.params.getParam("sync", ParamType::TGLsync, 0).value.GLsyncVal; FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); ResourceTracker &resourceTracker = context->getFrameCaptureSharedResourceTracker(); // If we're capturing, track which fence sync has been deleted if (frameCaptureShared->isCaptureActive()) { resourceTracker.setDeletedFenceSync(sync); } break; } case EntryPoint::GLDrawArrays: { maybeCaptureDrawArraysClientData(context, call, 1); break; } case EntryPoint::GLDrawArraysInstanced: case EntryPoint::GLDrawArraysInstancedANGLE: case EntryPoint::GLDrawArraysInstancedEXT: { GLsizei instancecount = call.params.getParamFlexName("instancecount", "primcount", ParamType::TGLsizei, 3) .value.GLsizeiVal; maybeCaptureDrawArraysClientData(context, call, instancecount); break; } case EntryPoint::GLDrawElements: { maybeCaptureDrawElementsClientData(context, call, 1); break; } case EntryPoint::GLDrawElementsInstanced: case EntryPoint::GLDrawElementsInstancedANGLE: case EntryPoint::GLDrawElementsInstancedEXT: { GLsizei instancecount = call.params.getParamFlexName("instancecount", "primcount", ParamType::TGLsizei, 4) .value.GLsizeiVal; maybeCaptureDrawElementsClientData(context, call, instancecount); break; } case EntryPoint::GLCreateShaderProgramv: { // Refresh the cached shader sources. // The command CreateShaderProgramv() creates a stand-alone program from an array of // null-terminated source code strings for a single shader type, so we need update the // Shader and Program sources, similar to GLCompileShader + GLLinkProgram handling. gl::ShaderProgramID programID = {call.params.getReturnValue().value.GLuintVal}; const ParamCapture ¶mCapture = call.params.getParam("typePacked", ParamType::TShaderType, 0); gl::ShaderType shaderType = paramCapture.value.ShaderTypeVal; gl::Program *program = context->getProgramResolveLink(programID); ASSERT(program); const gl::Shader *shader = program->getAttachedShader(shaderType); ASSERT(shader); FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); frameCaptureShared->setShaderSource(shader->getHandle(), shader->getSourceString()); frameCaptureShared->setProgramSources(programID, GetAttachedProgramSources(program)); if (isCaptureActive()) { mResourceTracker.setCreatedProgram(programID); } break; } case EntryPoint::GLCreateProgram: { // If we're capturing, track which programs have been created if (isCaptureActive()) { gl::ShaderProgramID programID = {call.params.getReturnValue().value.GLuintVal}; mResourceTracker.setCreatedProgram(programID); } break; } case EntryPoint::GLDeleteProgram: { // If we're capturing, track which programs have been deleted if (isCaptureActive()) { const ParamCapture ¶m = call.params.getParam("programPacked", ParamType::TShaderProgramID, 0); mResourceTracker.setDeletedProgram(param.value.ShaderProgramIDVal); } break; } case EntryPoint::GLCompileShader: { // Refresh the cached shader sources. gl::ShaderProgramID shaderID = call.params.getParam("shaderPacked", ParamType::TShaderProgramID, 0) .value.ShaderProgramIDVal; const gl::Shader *shader = context->getShader(shaderID); context->getShareGroup()->getFrameCaptureShared()->setShaderSource( shaderID, shader->getSourceString()); break; } case EntryPoint::GLLinkProgram: { // Refresh the cached program sources. gl::ShaderProgramID programID = call.params.getParam("programPacked", ParamType::TShaderProgramID, 0) .value.ShaderProgramIDVal; const gl::Program *program = context->getProgramResolveLink(programID); context->getShareGroup()->getFrameCaptureShared()->setProgramSources( programID, GetAttachedProgramSources(program)); break; } case EntryPoint::GLCompressedTexImage1D: case EntryPoint::GLCompressedTexSubImage1D: { UNIMPLEMENTED(); break; } case EntryPoint::GLCompressedTexImage2D: case EntryPoint::GLCompressedTexImage3D: case EntryPoint::GLCompressedTexSubImage2D: case EntryPoint::GLCompressedTexSubImage3D: { captureCompressedTextureData(context, call); break; } case EntryPoint::GLCopyImageSubData: case EntryPoint::GLCopyImageSubDataEXT: case EntryPoint::GLCopyImageSubDataOES: { // glCopyImageSubData supports copying compressed and uncompressed texture formats. copyCompressedTextureData(context, call); break; } case EntryPoint::GLDeleteTextures: { // Free any TextureLevelDataMap entries being tracked for this texture // This is to cover the scenario where a texture has been created, its // levels cached, then texture deleted and recreated, receiving the same ID // Look up how many textures are being deleted GLsizei n = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; // Look up the pointer to list of textures const gl::TextureID *textureIDs = call.params.getParam("texturesPacked", ParamType::TTextureIDConstPointer, 1) .value.TextureIDConstPointerVal; // For each texture listed for deletion for (int32_t i = 0; i < n; ++i) { // Look it up in the cache, and delete it if found context->getShareGroup()->getFrameCaptureShared()->deleteCachedTextureLevelData( textureIDs[i]); } break; } case EntryPoint::GLMapBuffer: case EntryPoint::GLMapBufferOES: { gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0) .value.BufferBindingVal; GLbitfield access = call.params.getParam("access", ParamType::TGLenum, 1).value.GLenumVal; gl::Buffer *buffer = context->getState().getTargetBuffer(target); GLintptr offset = 0; GLsizeiptr length = static_cast(buffer->getSize()); bool writable = access == GL_WRITE_ONLY_OES || access == GL_WRITE_ONLY || access == GL_READ_WRITE; FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); frameCaptureShared->trackBufferMapping(&call, buffer->id(), offset, length, writable); break; } case EntryPoint::GLUnmapNamedBuffer: { UNIMPLEMENTED(); break; } case EntryPoint::GLMapBufferRange: case EntryPoint::GLMapBufferRangeEXT: { GLintptr offset = call.params.getParam("offset", ParamType::TGLintptr, 1).value.GLintptrVal; GLsizeiptr length = call.params.getParam("length", ParamType::TGLsizeiptr, 2).value.GLsizeiptrVal; GLbitfield access = call.params.getParam("access", ParamType::TGLbitfield, 3).value.GLbitfieldVal; gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0) .value.BufferBindingVal; gl::Buffer *buffer = context->getState().getTargetBuffer(target); FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); frameCaptureShared->trackBufferMapping(&call, buffer->id(), offset, length, access & GL_MAP_WRITE_BIT); break; } case EntryPoint::GLUnmapBuffer: case EntryPoint::GLUnmapBufferOES: { // See if we need to capture the buffer contents captureMappedBufferSnapshot(context, call); // Track that the buffer was unmapped, for use during state reset ResourceTracker &resourceTracker = context->getFrameCaptureSharedResourceTracker(); gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0) .value.BufferBindingVal; gl::Buffer *buffer = context->getState().getTargetBuffer(target); resourceTracker.setBufferUnmapped(buffer->id()); break; } case EntryPoint::GLBufferData: case EntryPoint::GLBufferSubData: { gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0) .value.BufferBindingVal; gl::Buffer *buffer = context->getState().getTargetBuffer(target); // Track that this buffer's contents have been modified ResourceTracker &resourceTracker = context->getFrameCaptureSharedResourceTracker(); resourceTracker.setBufferModified(buffer->id()); // BufferData is equivalent to UnmapBuffer, for what we're tracking. // From the ES 3.1 spec in BufferData section: // If any portion of the buffer object is mapped in the current context or any // context current to another thread, it is as though UnmapBuffer (see section // 6.3.1) is executed in each such context prior to deleting the existing data // store. // Track that the buffer was unmapped, for use during state reset resourceTracker.setBufferUnmapped(buffer->id()); break; } default: break; } updateReadBufferSize(call.params.getReadBufferSize()); gl::ShaderProgramID shaderProgramID; if (FindShaderProgramIDInCall(call, &shaderProgramID)) { ResourceTracker &resourceTracker = context->getFrameCaptureSharedResourceTracker(); resourceTracker.onShaderProgramAccess(shaderProgramID); } } void FrameCaptureShared::captureCall(const gl::Context *context, CallCapture &&call, bool isCallValid) { if (SkipCall(call.entryPoint)) { return; } maybeOverrideEntryPoint(context, call); maybeCapturePreCallUpdates(context, call); if (isCallValid) { mFrameCalls.emplace_back(std::move(call)); } else { INFO() << "FrameCapture: Not capturing invalid call to " << GetEntryPointName(call.entryPoint); } maybeCapturePostCallUpdates(context); } void FrameCaptureShared::maybeCapturePostCallUpdates(const gl::Context *context) { // Process resource ID updates. MaybeCaptureUpdateResourceIDs(&mFrameCalls); const CallCapture &lastCall = mFrameCalls.back(); switch (lastCall.entryPoint) { case EntryPoint::GLCreateShaderProgramv: { gl::ShaderProgramID programId; programId.value = lastCall.params.getReturnValue().value.GLuintVal; const gl::Program *program = context->getProgramResolveLink(programId); CaptureUpdateUniformLocations(program, &mFrameCalls); CaptureUpdateUniformBlockIndexes(program, &mFrameCalls); break; } case EntryPoint::GLLinkProgram: { const ParamCapture ¶m = lastCall.params.getParam("programPacked", ParamType::TShaderProgramID, 0); const gl::Program *program = context->getProgramResolveLink(param.value.ShaderProgramIDVal); CaptureUpdateUniformLocations(program, &mFrameCalls); CaptureUpdateUniformBlockIndexes(program, &mFrameCalls); break; } case EntryPoint::GLUseProgram: CaptureUpdateCurrentProgram(lastCall, &mFrameCalls); break; case EntryPoint::GLDeleteProgram: { const ParamCapture ¶m = lastCall.params.getParam("programPacked", ParamType::TShaderProgramID, 0); CaptureDeleteUniformLocations(param.value.ShaderProgramIDVal, &mFrameCalls); break; } default: break; } } void FrameCaptureShared::captureClientArraySnapshot(const gl::Context *context, size_t vertexCount, size_t instanceCount) { const gl::VertexArray *vao = context->getState().getVertexArray(); // Capture client array data. for (size_t attribIndex : context->getStateCache().getActiveClientAttribsMask()) { const gl::VertexAttribute &attrib = vao->getVertexAttribute(attribIndex); const gl::VertexBinding &binding = vao->getVertexBinding(attrib.bindingIndex); int callIndex = mClientVertexArrayMap[attribIndex]; if (callIndex != -1) { size_t count = vertexCount; if (binding.getDivisor() > 0) { count = rx::UnsignedCeilDivide(static_cast(instanceCount), binding.getDivisor()); } // The last capture element doesn't take up the full stride. size_t bytesToCapture = (count - 1) * binding.getStride() + attrib.format->pixelBytes; CallCapture &call = mFrameCalls[callIndex]; ParamCapture ¶m = call.params.getClientArrayPointerParameter(); ASSERT(param.type == ParamType::TvoidConstPointer); ParamBuffer updateParamBuffer; updateParamBuffer.addValueParam("arrayIndex", ParamType::TGLint, static_cast(attribIndex)); ParamCapture updateMemory("pointer", ParamType::TvoidConstPointer); CaptureMemory(param.value.voidConstPointerVal, bytesToCapture, &updateMemory); updateParamBuffer.addParam(std::move(updateMemory)); updateParamBuffer.addValueParam("size", ParamType::TGLuint64, bytesToCapture); mFrameCalls.emplace_back("UpdateClientArrayPointer", std::move(updateParamBuffer)); mClientArraySizes[attribIndex] = std::max(mClientArraySizes[attribIndex], bytesToCapture); } } } void FrameCaptureShared::captureMappedBufferSnapshot(const gl::Context *context, const CallCapture &call) { // If the buffer was mapped writable, we need to restore its data, since we have no visibility // into what the client did to the buffer while mapped // This sequence will result in replay calls like this: // ... // gMappedBufferData[gBufferMap[42]] = glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0, 65536, // GL_MAP_WRITE_BIT); // ... // UpdateClientBufferData(42, &gBinaryData[164631024], 65536); // glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER); // ... // Re-map the buffer, using the info we tracked about the buffer gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0).value.BufferBindingVal; FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); gl::Buffer *buffer = context->getState().getTargetBuffer(target); if (!frameCaptureShared->hasBufferData(buffer->id())) { // This buffer was not marked writable, so we did not back it up return; } std::pair bufferDataOffsetAndLength = frameCaptureShared->getBufferDataOffsetAndLength(buffer->id()); GLintptr offset = bufferDataOffsetAndLength.first; GLsizeiptr length = bufferDataOffsetAndLength.second; // Map the buffer so we can copy its contents out ASSERT(!buffer->isMapped()); angle::Result result = buffer->mapRange(context, offset, length, GL_MAP_READ_BIT); if (result != angle::Result::Continue) { ERR() << "Failed to mapRange of buffer" << std::endl; } const uint8_t *data = reinterpret_cast(buffer->getMapPointer()); // Create the parameters to our helper for use during replay ParamBuffer dataParamBuffer; // Pass in the target buffer ID dataParamBuffer.addValueParam("dest", ParamType::TGLuint, buffer->id().value); // Capture the current buffer data with a binary param ParamCapture captureData("source", ParamType::TvoidConstPointer); CaptureMemory(data, length, &captureData); dataParamBuffer.addParam(std::move(captureData)); // Also track its size for use with memcpy dataParamBuffer.addValueParam("size", ParamType::TGLsizeiptr, length); // Call the helper that populates the buffer with captured data mFrameCalls.emplace_back("UpdateClientBufferData", std::move(dataParamBuffer)); // Unmap the buffer and move on GLboolean dontCare; (void)buffer->unmap(context, &dontCare); } void FrameCaptureShared::checkForCaptureTrigger() { // If the capture trigger has not been set, move on if (mCaptureTrigger == 0) { return; } // Otherwise, poll the value for a change std::string captureTriggerStr = GetCaptureTrigger(); if (captureTriggerStr.empty()) { return; } // If the value has changed, use the original value as the frame count // TODO (anglebug.com/4949): Improve capture at unknown frame time. It is good to // avoid polling if the feature is not enabled, but not entirely intuitive to set // a value to zero when you want to trigger it. uint32_t captureTrigger = atoi(captureTriggerStr.c_str()); if (captureTrigger != mCaptureTrigger) { // Start mid-execution capture for the next frame mCaptureStartFrame = mFrameIndex + 1; // Use the original trigger value as the frame count mCaptureEndFrame = mCaptureStartFrame + (mCaptureTrigger - 1); INFO() << "Capture triggered after frame " << mFrameIndex << " for " << mCaptureTrigger << " frames"; // Stop polling mCaptureTrigger = 0; } } void FrameCaptureShared::setupSharedAndAuxReplay(const gl::Context *context, bool isMidExecutionCapture) { // Make sure all pending work for every Context in the share group has completed so all data // (buffers, textures, etc.) has been updated and no resources are in use. egl::ShareGroup *shareGroup = context->getShareGroup(); const egl::ContextSet *shareContextSet = shareGroup->getContexts(); for (gl::Context *shareContext : *shareContextSet) { shareContext->finish(); } clearSetupCalls(); if (isMidExecutionCapture) { CaptureSharedContextMidExecutionSetup(context, &mSetupCalls, &mResourceTracker); } WriteSharedContextCppReplay(mCompression, mOutDirectory, mCaptureLabel, 1, 1, mSetupCalls, &mResourceTracker, &mBinaryData, mSerializeStateEnabled, *this); for (const gl::Context *shareContext : *shareContextSet) { FrameCapture *frameCapture = shareContext->getFrameCapture(); frameCapture->clearSetupCalls(); if (isMidExecutionCapture) { CaptureMidExecutionSetup(shareContext, &frameCapture->getSetupCalls(), &mResourceTracker); } if (!frameCapture->getSetupCalls().empty() && shareContext->id() != context->id()) { // The presentation context's setup functions will be written later as part of the // WriteWindowSurfaceContextCppReplay() output. WriteAuxiliaryContextCppSetupReplay(mCompression, mOutDirectory, shareContext, mCaptureLabel, 1, frameCapture->getSetupCalls(), &mBinaryData, mSerializeStateEnabled, *this); } } } void FrameCaptureShared::onEndFrame(const gl::Context *context) { if (!enabled() || mFrameIndex > mCaptureEndFrame) { setCaptureInactive(); return; } FrameCapture *frameCapture = context->getFrameCapture(); // Count resource IDs. This is also done on every frame. It could probably be done by // checking the GL state instead of the calls. for (const CallCapture &call : mFrameCalls) { for (const ParamCapture ¶m : call.params.getParamCaptures()) { ResourceIDType idType = GetResourceIDTypeFromParamType(param.type); if (idType != ResourceIDType::InvalidEnum) { mHasResourceType.set(idType); } } } // On Android, we can trigger a capture during the run checkForCaptureTrigger(); // Done after checkForCaptureTrigger(), since that can modify mCaptureStartFrame. if (mFrameIndex >= mCaptureStartFrame) { setCaptureActive(); // Assume that the context performing the swap is the "main" context. mWindowSurfaceContextID = context->id(); } else { reset(); mFrameIndex++; // When performing a mid-execution capture, setup the replay before capturing calls for the // first frame. if (mFrameIndex == mCaptureStartFrame) { setupSharedAndAuxReplay(context, true); } // Not capturing yet, so return. return; } if (mIsFirstFrame) { mCaptureStartFrame = mFrameIndex; // When *not* performing a mid-execution capture, setup the replay with the first frame. if (mCaptureStartFrame == 1) { setupSharedAndAuxReplay(context, false); } } if (!mFrameCalls.empty()) { mActiveFrameIndices.push_back(getReplayFrameIndex()); } // Note that we currently capture before the start frame to collect shader and program sources. // For simplicity, it's currently a requirement that the same context is used to perform the // swap every frame. ASSERT(mWindowSurfaceContextID == context->id()); // Make sure all pending work for every Context in the share group has completed so all data // (buffers, textures, etc.) has been updated and no resources are in use. egl::ShareGroup *shareGroup = context->getShareGroup(); const egl::ContextSet *shareContextSet = shareGroup->getContexts(); for (gl::Context *shareContext : *shareContextSet) { shareContext->finish(); } WriteWindowSurfaceContextCppReplay(mCompression, mOutDirectory, context, mCaptureLabel, getReplayFrameIndex(), getFrameCount(), mFrameCalls, frameCapture->getSetupCalls(), &mResourceTracker, &mBinaryData, mSerializeStateEnabled, *this); if (mFrameIndex == mCaptureEndFrame) { // Save the index files after the last frame. writeCppReplayIndexFiles(context, false); SaveBinaryData(mCompression, mOutDirectory, kSharedContextId, mCaptureLabel, mBinaryData); mBinaryData.clear(); mWroteIndexFile = true; } reset(); mFrameIndex++; mIsFirstFrame = false; } void FrameCaptureShared::onDestroyContext(const gl::Context *context) { if (!mEnabled) { return; } if (!mWroteIndexFile && mFrameIndex > mCaptureStartFrame) { // If context is destroyed before end frame is reached and at least // 1 frame has been recorded, then write the index files. // It doesnt make sense to write the index files when no frame has been recorded mFrameIndex -= 1; mCaptureEndFrame = mFrameIndex; writeCppReplayIndexFiles(context, true); SaveBinaryData(mCompression, mOutDirectory, kSharedContextId, mCaptureLabel, mBinaryData); mBinaryData.clear(); mWroteIndexFile = true; } } void FrameCaptureShared::onMakeCurrent(const gl::Context *context, const egl::Surface *drawSurface) { if (!drawSurface) { return; } // Track the width and height of the draw surface as provided to makeCurrent mDrawSurfaceDimensions[context->id()] = gl::Extents(drawSurface->getWidth(), drawSurface->getHeight(), 1); } DataCounters::DataCounters() = default; DataCounters::~DataCounters() = default; int DataCounters::getAndIncrement(EntryPoint entryPoint, const std::string ¶mName) { Counter counterKey = {entryPoint, paramName}; return mData[counterKey]++; } DataTracker::DataTracker() = default; DataTracker::~DataTracker() = default; StringCounters::StringCounters() = default; StringCounters::~StringCounters() = default; int StringCounters::getStringCounter(std::vector &strings) { const auto &id = mStringCounterMap.find(strings); if (id == mStringCounterMap.end()) { return kStringsNotFound; } else { return mStringCounterMap[strings]; } } void StringCounters::setStringCounter(std::vector &strings, int &counter) { ASSERT(counter >= 0); mStringCounterMap[strings] = counter; } ResourceTracker::ResourceTracker() = default; ResourceTracker::~ResourceTracker() = default; void ResourceTracker::setDeletedBuffer(gl::BufferID id) { if (id.value == 0) { // Ignore buffer ID 0 return; } if (mNewBuffers.find(id) != mNewBuffers.end()) { // This is a buffer genned after MEC was initialized, just clear it, since there will be no // actions required for it to return to starting state. mNewBuffers.erase(id); return; } if (mStartingBuffers.find(id) != mStartingBuffers.end()) { // The app is deleting a buffer we started with, we need to regen on loop mBuffersToRegen.insert(id); mBuffersToRestore.insert(id); } // If none of the above is true, the app is deleting a buffer that was never genned. // This is allowed by the spec for DeleteBuffers: // Unused names in buffers are silently ignored, as is the value zero. } void ResourceTracker::setDeletedFenceSync(GLsync sync) { ASSERT(sync != nullptr); if (mStartingFenceSyncs.find(sync) == mStartingFenceSyncs.end()) { // This is a fence sync created after MEC was initialized. Ignore it. return; } // In this case, the app is deleting a fence sync we started with, we need to regen on loop. mFenceSyncsToRegen.insert(sync); } void ResourceTracker::setCreatedProgram(gl::ShaderProgramID id) { if (mStartingPrograms.find(id) == mStartingPrograms.end()) { // This is a program created after MEC was initialized, track it mNewPrograms.insert(id); return; } } void ResourceTracker::setDeletedProgram(gl::ShaderProgramID id) { if (id.value == 0) { // Ignore program ID 0 return; } if (mNewPrograms.find(id) != mNewPrograms.end()) { // This is a program created after MEC was initialized, just clear it, since there will be // no actions required for it to return to starting state. mNewPrograms.erase(id); return; } // Ensure this program was in our starting set // It's possible this could fire if the app deletes programs that were never generated ASSERT(mStartingPrograms.empty() || (mStartingPrograms.find(id) != mStartingPrograms.end())); // In this case, the app is deleting a program we started with, we need to regen on loop mProgramsToRegen.insert(id); } void ResourceTracker::setGennedBuffer(gl::BufferID id) { if (mStartingBuffers.find(id) == mStartingBuffers.end()) { // This is a buffer genned after MEC was initialized, track it mNewBuffers.insert(id); return; } } void ResourceTracker::setBufferModified(gl::BufferID id) { // If this was a starting buffer, we need to track it for restore if (mStartingBuffers.find(id) != mStartingBuffers.end()) { mBuffersToRestore.insert(id); } } void ResourceTracker::setBufferMapped(gl::BufferID id) { // If this was a starting buffer, we may need to restore it to original state during Reset if (mStartingBuffers.find(id) != mStartingBuffers.end()) { // Track that its current state is mapped (true) mStartingBuffersMappedCurrent[id] = true; } } void ResourceTracker::setBufferUnmapped(gl::BufferID id) { // If this was a starting buffer, we may need to restore it to original state during Reset if (mStartingBuffers.find(id) != mStartingBuffers.end()) { // Track that its current state is unmapped (false) mStartingBuffersMappedCurrent[id] = false; } } void ResourceTracker::onShaderProgramAccess(gl::ShaderProgramID shaderProgramID) { mMaxShaderPrograms = std::max(mMaxShaderPrograms, shaderProgramID.value + 1); } bool FrameCaptureShared::isCapturing() const { // Currently we will always do a capture up until the last frame. In the future we could improve // mid execution capture by only capturing between the start and end frames. The only necessary // reason we need to capture before the start is for attached program and shader sources. return mEnabled && mFrameIndex <= mCaptureEndFrame; } uint32_t FrameCaptureShared::getFrameCount() const { return mCaptureEndFrame - mCaptureStartFrame + 1; } uint32_t FrameCaptureShared::getReplayFrameIndex() const { return mFrameIndex - mCaptureStartFrame + 1; } void FrameCaptureShared::replay(gl::Context *context) { ReplayContext replayContext(mReadBufferSize, mClientArraySizes); for (const CallCapture &call : mFrameCalls) { INFO() << "frame index: " << mFrameIndex << " " << call.name(); if (call.entryPoint == EntryPoint::GLInvalid) { if (call.customFunctionName == "UpdateClientArrayPointer") { GLint arrayIndex = call.params.getParam("arrayIndex", ParamType::TGLint, 0).value.GLintVal; ASSERT(arrayIndex < gl::MAX_VERTEX_ATTRIBS); const ParamCapture &pointerParam = call.params.getParam("pointer", ParamType::TvoidConstPointer, 1); ASSERT(pointerParam.data.size() == 1); const void *pointer = pointerParam.data[0].data(); size_t size = static_cast( call.params.getParam("size", ParamType::TGLuint64, 2).value.GLuint64Val); std::vector &curClientArrayBuffer = replayContext.getClientArraysBuffer()[arrayIndex]; ASSERT(curClientArrayBuffer.size() >= size); memcpy(curClientArrayBuffer.data(), pointer, size); } continue; } ReplayCall(context, &replayContext, call); } } void FrameCaptureShared::writeCppReplayIndexFiles(const gl::Context *context, bool writeResetContextCall) { const gl::ContextID contextId = context->id(); const egl::Config *config = context->getConfig(); const egl::AttributeMap &attributes = context->getDisplay()->getAttributeMap(); unsigned frameCount = getFrameCount(); std::stringstream header; std::stringstream source; header << "#pragma once\n"; header << "\n"; header << "#include \n"; header << "#include \n"; header << "\n"; if (!mCaptureLabel.empty()) { header << "namespace " << mCaptureLabel << "\n"; header << "{\n"; } header << "// Begin Trace Metadata\n"; header << "#define ANGLE_REPLAY_VERSION"; if (!mCaptureLabel.empty()) { std::string captureLabelUpper = mCaptureLabel; angle::ToUpper(&captureLabelUpper); header << "_" << captureLabelUpper; } header << " " << ANGLE_REVISION << "\n"; header << "constexpr uint32_t kReplayContextClientMajorVersion = " << context->getClientMajorVersion() << ";\n"; header << "constexpr uint32_t kReplayContextClientMinorVersion = " << context->getClientMinorVersion() << ";\n"; header << "constexpr EGLint kReplayPlatformType = " << attributes.getAsInt(EGL_PLATFORM_ANGLE_TYPE_ANGLE) << ";\n"; header << "constexpr EGLint kReplayDeviceType = " << attributes.getAsInt(EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE) << ";\n"; header << "constexpr uint32_t kReplayFrameStart = 1;\n"; header << "constexpr uint32_t kReplayFrameEnd = " << frameCount << ";\n"; header << "constexpr EGLint kReplayDrawSurfaceWidth = " << mDrawSurfaceDimensions.at(contextId).width << ";\n"; header << "constexpr EGLint kReplayDrawSurfaceHeight = " << mDrawSurfaceDimensions.at(contextId).height << ";\n"; header << "constexpr EGLint kDefaultFramebufferRedBits = " << (config ? std::to_string(config->redSize) : "EGL_DONT_CARE") << ";\n"; header << "constexpr EGLint kDefaultFramebufferGreenBits = " << (config ? std::to_string(config->greenSize) : "EGL_DONT_CARE") << ";\n"; header << "constexpr EGLint kDefaultFramebufferBlueBits = " << (config ? std::to_string(config->blueSize) : "EGL_DONT_CARE") << ";\n"; header << "constexpr EGLint kDefaultFramebufferAlphaBits = " << (config ? std::to_string(config->alphaSize) : "EGL_DONT_CARE") << ";\n"; header << "constexpr EGLint kDefaultFramebufferDepthBits = " << (config ? std::to_string(config->depthSize) : "EGL_DONT_CARE") << ";\n"; header << "constexpr EGLint kDefaultFramebufferStencilBits = " << (config ? std::to_string(config->stencilSize) : "EGL_DONT_CARE") << ";\n"; header << "constexpr bool kIsBinaryDataCompressed = " << (mCompression ? "true" : "false") << ";\n"; header << "constexpr bool kAreClientArraysEnabled = " << (context->getState().areClientArraysEnabled() ? "true" : "false") << ";\n"; header << "constexpr bool kbindGeneratesResources = " << (context->getState().isBindGeneratesResourceEnabled() ? "true" : "false") << ";\n"; header << "constexpr bool kWebGLCompatibility = " << (context->getState().getExtensions().webglCompatibility ? "true" : "false") << ";\n"; header << "constexpr bool kRobustResourceInit = " << (context->getState().isRobustResourceInitEnabled() ? "true" : "false") << ";\n"; header << "// End Trace Metadata\n"; header << "\n"; for (uint32_t frameIndex = 1; frameIndex <= frameCount; ++frameIndex) { header << "void " << FmtReplayFunction(contextId, frameIndex) << ";\n"; } header << "\n"; if (mSerializeStateEnabled) { for (uint32_t frameIndex = 1; frameIndex <= frameCount; ++frameIndex) { header << "const char *" << FmtGetSerializedContextStateFunction(contextId, frameIndex) << ";\n"; } header << "\n"; } header << "void InitReplay();\n"; source << "#include \"" << FmtCapturePrefix(contextId, mCaptureLabel) << ".h\"\n"; source << "#include \"trace_fixture.h\"\n"; source << "#include \"angle_trace_gl.h\"\n"; source << "\n"; if (!mCaptureLabel.empty()) { source << "using namespace " << mCaptureLabel << ";\n"; source << "\n"; } source << "void " << mCaptureLabel << "::InitReplay()\n"; source << "{\n"; WriteInitReplayCall(mCompression, source, kSharedContextId, mCaptureLabel, MaxClientArraySize(mClientArraySizes), mReadBufferSize); source << "}\n"; source << "extern \"C\" {\n"; source << "void ReplayFrame(uint32_t frameIndex)\n"; source << "{\n"; source << " switch (frameIndex)\n"; source << " {\n"; for (uint32_t frameIndex : mActiveFrameIndices) { source << " case " << frameIndex << ":\n"; source << " " << FmtReplayFunction(contextId, frameIndex) << ";\n"; source << " break;\n"; } source << " default:\n"; source << " break;\n"; source << " }\n"; source << "}\n"; source << "\n"; if (writeResetContextCall) { source << "void ResetReplay()\n"; source << "{\n"; source << " // Reset context is empty because context is destroyed before end " "frame is reached\n"; source << "}\n"; source << "\n"; } if (mSerializeStateEnabled) { source << "const char *GetSerializedContextState(uint32_t frameIndex)\n"; source << "{\n"; source << " switch (frameIndex)\n"; source << " {\n"; for (uint32_t frameIndex = 1; frameIndex <= frameCount; ++frameIndex) { source << " case " << frameIndex << ":\n"; source << " return " << FmtGetSerializedContextStateFunction(contextId, frameIndex) << ";\n"; } source << " default:\n"; source << " return \"\";\n"; source << " }\n"; source << "}\n"; source << "\n"; } source << "} // extern \"C\"\n"; if (!mCaptureLabel.empty()) { header << "} // namespace " << mCaptureLabel << "\n"; } { std::string headerContents = header.str(); std::stringstream headerPathStream; headerPathStream << mOutDirectory << FmtCapturePrefix(contextId, mCaptureLabel) << ".h"; std::string headerPath = headerPathStream.str(); SaveFileHelper saveHeader(headerPath); saveHeader << headerContents; } { std::string sourceContents = source.str(); std::stringstream sourcePathStream; sourcePathStream << mOutDirectory << FmtCapturePrefix(contextId, mCaptureLabel) << ".cpp"; std::string sourcePath = sourcePathStream.str(); SaveFileHelper saveSource(sourcePath); saveSource << sourceContents; } { std::stringstream indexPathStream; indexPathStream << mOutDirectory << FmtCapturePrefix(contextId, mCaptureLabel) << "_files.txt"; std::string indexPath = indexPathStream.str(); SaveFileHelper saveIndex(indexPath); for (uint32_t frameIndex = 1; frameIndex <= frameCount; ++frameIndex) { saveIndex << GetCaptureFileName(contextId, mCaptureLabel, frameIndex, ".cpp") << "\n"; } egl::ShareGroup *shareGroup = context->getShareGroup(); egl::ContextSet *shareContextSet = shareGroup->getContexts(); for (gl::Context *shareContext : *shareContextSet) { if (shareContext->id() == contextId) { // We already listed all of the "main" context's files, so skip it here. continue; } saveIndex << GetCaptureFileName(shareContext->id(), mCaptureLabel, 1, ".cpp") << "\n"; } saveIndex << GetCaptureFileName(kSharedContextId, mCaptureLabel, 1, ".cpp") << "\n"; } } void FrameCaptureShared::reset() { mFrameCalls.clear(); mClientVertexArrayMap.fill(-1); // Do not reset replay-specific settings like the maximum read buffer size, client array sizes, // or the 'has seen' type map. We could refine this into per-frame and per-capture maximums if // necessary. } const std::string &FrameCaptureShared::getShaderSource(gl::ShaderProgramID id) const { const auto &foundSources = mCachedShaderSource.find(id); ASSERT(foundSources != mCachedShaderSource.end()); return foundSources->second; } void FrameCaptureShared::setShaderSource(gl::ShaderProgramID id, std::string source) { mCachedShaderSource[id] = source; } const ProgramSources &FrameCaptureShared::getProgramSources(gl::ShaderProgramID id) const { const auto &foundSources = mCachedProgramSources.find(id); ASSERT(foundSources != mCachedProgramSources.end()); return foundSources->second; } void FrameCaptureShared::setProgramSources(gl::ShaderProgramID id, ProgramSources sources) { mCachedProgramSources[id] = sources; } const std::vector &FrameCaptureShared::retrieveCachedTextureLevel(gl::TextureID id, gl::TextureTarget target, GLint level) { // Look up the data for the requested texture const auto &foundTextureLevels = mCachedTextureLevelData.find(id); ASSERT(foundTextureLevels != mCachedTextureLevelData.end()); GLint adjustedLevel = GetAdjustedTextureCacheLevel(target, level); const auto &foundTextureLevel = foundTextureLevels->second.find(adjustedLevel); ASSERT(foundTextureLevel != foundTextureLevels->second.end()); const std::vector &capturedTextureLevel = foundTextureLevel->second; return capturedTextureLevel; } void FrameCaptureShared::copyCachedTextureLevel(const gl::Context *context, gl::TextureID srcID, GLint srcLevel, gl::TextureID dstID, GLint dstLevel, const CallCapture &call) { // TODO(http://anglebug.com/5604): Add support for partial level copies. ASSERT(call.params.getParam("srcX", ParamType::TGLint, 3).value.GLintVal == 0); ASSERT(call.params.getParam("srcY", ParamType::TGLint, 4).value.GLintVal == 0); ASSERT(call.params.getParam("srcZ", ParamType::TGLint, 5).value.GLintVal == 0); ASSERT(call.params.getParam("dstX", ParamType::TGLint, 9).value.GLintVal == 0); ASSERT(call.params.getParam("dstY", ParamType::TGLint, 10).value.GLintVal == 0); ASSERT(call.params.getParam("dstZ", ParamType::TGLint, 11).value.GLintVal == 0); GLenum srcTarget = call.params.getParam("srcTarget", ParamType::TGLenum, 1).value.GLenumVal; GLsizei srcWidth = call.params.getParam("srcWidth", ParamType::TGLsizei, 12).value.GLsizeiVal; GLsizei srcHeight = call.params.getParam("srcHeight", ParamType::TGLsizei, 13).value.GLsizeiVal; GLsizei srcDepth = call.params.getParam("srcDepth", ParamType::TGLsizei, 14).value.GLsizeiVal; gl::Texture *srcTexture = context->getTexture({srcID}); gl::TextureTarget srcTargetPacked = gl::PackParam(srcTarget); const gl::Extents &srcExtents = srcTexture->getExtents(srcTargetPacked, srcLevel); ASSERT(srcExtents.width == srcWidth && srcExtents.height == srcHeight && srcExtents.depth == srcDepth); // Look up the data for the source texture const auto &foundSrcTextureLevels = mCachedTextureLevelData.find(srcID); ASSERT(foundSrcTextureLevels != mCachedTextureLevelData.end()); // For that texture, look up the data for the given level const auto &foundSrcTextureLevel = foundSrcTextureLevels->second.find(srcLevel); ASSERT(foundSrcTextureLevel != foundSrcTextureLevels->second.end()); const std::vector &srcTextureLevel = foundSrcTextureLevel->second; auto foundDstTextureLevels = mCachedTextureLevelData.find(dstID); if (foundDstTextureLevels == mCachedTextureLevelData.end()) { // Initialize the texture ID data. auto emplaceResult = mCachedTextureLevelData.emplace(dstID, TextureLevels()); ASSERT(emplaceResult.second); foundDstTextureLevels = emplaceResult.first; } TextureLevels &foundDstLevels = foundDstTextureLevels->second; TextureLevels::iterator foundDstLevel = foundDstLevels.find(dstLevel); if (foundDstLevel != foundDstLevels.end()) { // If we have a cache for this level, remove it since we're recreating it. foundDstLevels.erase(dstLevel); } // Initialize destination texture data and copy the source into it. std::vector dstTextureLevel = srcTextureLevel; auto emplaceResult = foundDstLevels.emplace(dstLevel, std::move(dstTextureLevel)); ASSERT(emplaceResult.second); } std::vector &FrameCaptureShared::getCachedTextureLevelData(gl::Texture *texture, gl::TextureTarget target, GLint textureLevel, EntryPoint entryPoint) { auto foundTextureLevels = mCachedTextureLevelData.find(texture->id()); if (foundTextureLevels == mCachedTextureLevelData.end()) { // Initialize the texture ID data. auto emplaceResult = mCachedTextureLevelData.emplace(texture->id(), TextureLevels()); ASSERT(emplaceResult.second); foundTextureLevels = emplaceResult.first; } // For this texture, look up the adjusted level, which may not match 1:1 due to cubes GLint adjustedLevel = GetAdjustedTextureCacheLevel(target, textureLevel); TextureLevels &foundLevels = foundTextureLevels->second; TextureLevels::iterator foundLevel = foundLevels.find(adjustedLevel); if (foundLevel != foundLevels.end()) { if (entryPoint == EntryPoint::GLCompressedTexImage2D || entryPoint == EntryPoint::GLCompressedTexImage3D) { // Delete the cached entry in case the caller is respecifying the level. foundLevels.erase(adjustedLevel); } else { ASSERT(entryPoint == EntryPoint::GLCompressedTexSubImage2D || entryPoint == EntryPoint::GLCompressedTexSubImage3D); // If we have a cache for this level, return it now return foundLevel->second; } } // Otherwise, create an appropriately sized cache for this level // Get the format of the texture for use with the compressed block size math. const gl::InternalFormat &format = *texture->getFormat(target, textureLevel).info; // Divide dimensions according to block size. const gl::Extents &levelExtents = texture->getExtents(target, textureLevel); // Calculate the size needed to store the compressed level GLuint sizeInBytes; bool result = format.computeCompressedImageSize(levelExtents, &sizeInBytes); ASSERT(result); // Initialize texture rectangle data. Default init to zero for stability. std::vector newPixelData(sizeInBytes, 0); auto emplaceResult = foundLevels.emplace(adjustedLevel, std::move(newPixelData)); ASSERT(emplaceResult.second); // Using the level entry we just created, return the location (a byte vector) where compressed // texture level data should be stored return emplaceResult.first->second; } void FrameCaptureShared::deleteCachedTextureLevelData(gl::TextureID id) { const auto &foundTextureLevels = mCachedTextureLevelData.find(id); if (foundTextureLevels != mCachedTextureLevelData.end()) { // Delete all texture levels at once mCachedTextureLevelData.erase(foundTextureLevels); } } void CaptureMemory(const void *source, size_t size, ParamCapture *paramCapture) { std::vector data(size); memcpy(data.data(), source, size); paramCapture->data.emplace_back(std::move(data)); } void CaptureString(const GLchar *str, ParamCapture *paramCapture) { // include the '\0' suffix CaptureMemory(str, strlen(str) + 1, paramCapture); } void CaptureStringLimit(const GLchar *str, uint32_t limit, ParamCapture *paramCapture) { // Write the incoming string up to limit, including null terminator size_t length = strlen(str) + 1; if (length > limit) { // If too many characters, resize the string to fit in the limit std::string newStr = str; newStr.resize(limit - 1); CaptureString(newStr.c_str(), paramCapture); } else { CaptureMemory(str, length, paramCapture); } } void CaptureVertexPointerGLES1(const gl::State &glState, gl::ClientVertexArrayType type, const void *pointer, ParamCapture *paramCapture) { paramCapture->value.voidConstPointerVal = pointer; if (!glState.getTargetBuffer(gl::BufferBinding::Array)) { paramCapture->arrayClientPointerIndex = gl::GLES1Renderer::VertexArrayIndex(type, glState.gles1()); } } gl::Program *GetProgramForCapture(const gl::State &glState, gl::ShaderProgramID handle) { gl::Program *program = glState.getShaderProgramManagerForCapture().getProgram(handle); return program; } void CaptureGetActiveUniformBlockivParameters(const gl::State &glState, gl::ShaderProgramID handle, gl::UniformBlockIndex uniformBlockIndex, GLenum pname, ParamCapture *paramCapture) { int numParams = 1; // From the OpenGL ES 3.0 spec: // If pname is UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the // active uniform indices for the uniform block identified by uniformBlockIndex is // returned. The number of elements that will be written to params is the value of // UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex if (pname == GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES) { gl::Program *program = GetProgramForCapture(glState, handle); if (program) { gl::QueryActiveUniformBlockiv(program, uniformBlockIndex, GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, &numParams); } } paramCapture->readBufferSizeBytes = sizeof(GLint) * numParams; } void CaptureGetParameter(const gl::State &glState, GLenum pname, size_t typeSize, ParamCapture *paramCapture) { // kMaxReportedCapabilities is the biggest array we'll need to hold data from glGet calls. // This value needs to be updated if any new extensions are introduced that would allow for // more compressed texture formats. The current value is taken from: // http://opengles.gpuinfo.org/displaycapability.php?name=GL_NUM_COMPRESSED_TEXTURE_FORMATS&esversion=2 constexpr unsigned int kMaxReportedCapabilities = 69; paramCapture->readBufferSizeBytes = typeSize * kMaxReportedCapabilities; } void CaptureGenHandlesImpl(GLsizei n, GLuint *handles, ParamCapture *paramCapture) { paramCapture->readBufferSizeBytes = sizeof(GLuint) * n; CaptureMemory(handles, paramCapture->readBufferSizeBytes, paramCapture); } void CaptureShaderStrings(GLsizei count, const GLchar *const *strings, const GLint *length, ParamCapture *paramCapture) { for (GLsizei index = 0; index < count; ++index) { size_t len = ((length && length[index] >= 0) ? length[index] : strlen(strings[index])); // includes the '\0' suffix std::vector data(len + 1, 0); memcpy(data.data(), strings[index], len); paramCapture->data.emplace_back(std::move(data)); } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLboolean value) { switch (value) { case GL_TRUE: os << "GL_TRUE"; break; case GL_FALSE: os << "GL_FALSE"; break; default: os << "0x" << std::hex << std::uppercase << GLint(value); } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, const void *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, const GLfloat *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, const GLuint *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLDEBUGPROCKHR value) {} template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLDEBUGPROC value) {} template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::BufferID value) { os << "gBufferMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::FenceNVID value) { os << "gFenceNVMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::FramebufferID value) { os << "gFramebufferMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::MemoryObjectID value) { os << "gMemoryObjectMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::ProgramPipelineID value) { os << "gProgramPipelineMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::QueryID value) { os << "gQueryMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::RenderbufferID value) { os << "gRenderbufferMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::SamplerID value) { os << "gSamplerMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::SemaphoreID value) { os << "gSemaphoreMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::ShaderProgramID value) { os << "gShaderProgramMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLsync value) { os << "gSyncMap[" << SyncIndexValue(value) << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::TextureID value) { os << "gTextureMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::TransformFeedbackID value) { os << "gTransformFeedbackMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::VertexArrayID value) { os << "gVertexArrayMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::UniformLocation value) { if (value.value == -1) { os << "-1"; return; } os << "gUniformLocations["; // Find the program from the call parameters. gl::ShaderProgramID programID; if (FindShaderProgramIDInCall(call, &programID)) { os << "gShaderProgramMap[" << programID.value << "]"; } else { os << "gCurrentProgram"; } os << "][" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::UniformBlockIndex value) { // Find the program from the call parameters. gl::ShaderProgramID programID; bool foundProgram = FindShaderProgramIDInCall(call, &programID); ASSERT(foundProgram); os << "gUniformBlockIndexes[gShaderProgramMap[" << programID.value << "]][" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLeglImageOES value) { uint64_t pointerValue = reinterpret_cast(value); os << "reinterpret_cast(" << pointerValue << "ul)"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLubyte value) { const int v = value; os << v; } } // namespace angle