/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #define RESTRICT #else #define RESTRICT restrict #endif #include "../internal.h" #include "internal.h" #if defined(OPENSSL_SSE2) #include #endif #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \ (defined(__ARM_NEON__) || defined(__ARM_NEON)) #include #endif // This is an implementation of [HRSS], but with a KEM transformation based on // [SXY]. The primary references are: // HRSS: https://eprint.iacr.org/2017/667.pdf // HRSSNIST: // https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip // SXY: https://eprint.iacr.org/2017/1005.pdf // NTRUTN14: // https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf // NTRUCOMP: https://eprint.iacr.org/2018/1174 // SAFEGCD: https://gcd.cr.yp.to/papers.html#safegcd // Vector operations. // // A couple of functions in this file can use vector operations to meaningful // effect. If we're building for a target that has a supported vector unit, // |HRSS_HAVE_VECTOR_UNIT| will be defined and |vec_t| will be typedefed to a // 128-bit vector. The following functions abstract over the differences between // NEON and SSE2 for implementing some vector operations. // TODO: MSVC can likely also be made to work with vector operations, but ^ must // be replaced with _mm_xor_si128, etc. #if defined(OPENSSL_SSE2) && (defined(__clang__) || !defined(_MSC_VER)) #define HRSS_HAVE_VECTOR_UNIT typedef __m128i vec_t; // vec_capable returns one iff the current platform supports SSE2. static int vec_capable(void) { return 1; } // vec_add performs a pair-wise addition of four uint16s from |a| and |b|. static inline vec_t vec_add(vec_t a, vec_t b) { return _mm_add_epi16(a, b); } // vec_sub performs a pair-wise subtraction of four uint16s from |a| and |b|. static inline vec_t vec_sub(vec_t a, vec_t b) { return _mm_sub_epi16(a, b); } // vec_mul multiplies each uint16_t in |a| by |b| and returns the resulting // vector. static inline vec_t vec_mul(vec_t a, uint16_t b) { return _mm_mullo_epi16(a, _mm_set1_epi16(b)); } // vec_fma multiplies each uint16_t in |b| by |c|, adds the result to |a|, and // returns the resulting vector. static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) { return _mm_add_epi16(a, _mm_mullo_epi16(b, _mm_set1_epi16(c))); } // vec3_rshift_word right-shifts the 24 uint16_t's in |v| by one uint16. static inline void vec3_rshift_word(vec_t v[3]) { // Intel's left and right shifting is backwards compared to the order in // memory because they're based on little-endian order of words (and not just // bytes). So the shifts in this function will be backwards from what one // might expect. const __m128i carry0 = _mm_srli_si128(v[0], 14); v[0] = _mm_slli_si128(v[0], 2); const __m128i carry1 = _mm_srli_si128(v[1], 14); v[1] = _mm_slli_si128(v[1], 2); v[1] |= carry0; v[2] = _mm_slli_si128(v[2], 2); v[2] |= carry1; } // vec4_rshift_word right-shifts the 32 uint16_t's in |v| by one uint16. static inline void vec4_rshift_word(vec_t v[4]) { // Intel's left and right shifting is backwards compared to the order in // memory because they're based on little-endian order of words (and not just // bytes). So the shifts in this function will be backwards from what one // might expect. const __m128i carry0 = _mm_srli_si128(v[0], 14); v[0] = _mm_slli_si128(v[0], 2); const __m128i carry1 = _mm_srli_si128(v[1], 14); v[1] = _mm_slli_si128(v[1], 2); v[1] |= carry0; const __m128i carry2 = _mm_srli_si128(v[2], 14); v[2] = _mm_slli_si128(v[2], 2); v[2] |= carry1; v[3] = _mm_slli_si128(v[3], 2); v[3] |= carry2; } // vec_merge_3_5 takes the final three uint16_t's from |left|, appends the first // five from |right|, and returns the resulting vector. static inline vec_t vec_merge_3_5(vec_t left, vec_t right) { return _mm_srli_si128(left, 10) | _mm_slli_si128(right, 6); } // poly3_vec_lshift1 left-shifts the 768 bits in |a_s|, and in |a_a|, by one // bit. static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) { vec_t carry_s = {0}; vec_t carry_a = {0}; for (int i = 0; i < 6; i++) { vec_t next_carry_s = _mm_srli_epi64(a_s[i], 63); a_s[i] = _mm_slli_epi64(a_s[i], 1); a_s[i] |= _mm_slli_si128(next_carry_s, 8); a_s[i] |= carry_s; carry_s = _mm_srli_si128(next_carry_s, 8); vec_t next_carry_a = _mm_srli_epi64(a_a[i], 63); a_a[i] = _mm_slli_epi64(a_a[i], 1); a_a[i] |= _mm_slli_si128(next_carry_a, 8); a_a[i] |= carry_a; carry_a = _mm_srli_si128(next_carry_a, 8); } } // poly3_vec_rshift1 right-shifts the 768 bits in |a_s|, and in |a_a|, by one // bit. static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) { vec_t carry_s = {0}; vec_t carry_a = {0}; for (int i = 5; i >= 0; i--) { const vec_t next_carry_s = _mm_slli_epi64(a_s[i], 63); a_s[i] = _mm_srli_epi64(a_s[i], 1); a_s[i] |= _mm_srli_si128(next_carry_s, 8); a_s[i] |= carry_s; carry_s = _mm_slli_si128(next_carry_s, 8); const vec_t next_carry_a = _mm_slli_epi64(a_a[i], 63); a_a[i] = _mm_srli_epi64(a_a[i], 1); a_a[i] |= _mm_srli_si128(next_carry_a, 8); a_a[i] |= carry_a; carry_a = _mm_slli_si128(next_carry_a, 8); } } // vec_broadcast_bit duplicates the least-significant bit in |a| to all bits in // a vector and returns the result. static inline vec_t vec_broadcast_bit(vec_t a) { return _mm_shuffle_epi32(_mm_srai_epi32(_mm_slli_epi64(a, 63), 31), 0b01010101); } // vec_get_word returns the |i|th uint16_t in |v|. (This is a macro because the // compiler requires that |i| be a compile-time constant.) #define vec_get_word(v, i) _mm_extract_epi16(v, i) #elif (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \ (defined(__ARM_NEON__) || defined(__ARM_NEON)) #define HRSS_HAVE_VECTOR_UNIT typedef uint16x8_t vec_t; // These functions perform the same actions as the SSE2 function of the same // name, above. static int vec_capable(void) { return CRYPTO_is_NEON_capable(); } static inline vec_t vec_add(vec_t a, vec_t b) { return a + b; } static inline vec_t vec_sub(vec_t a, vec_t b) { return a - b; } static inline vec_t vec_mul(vec_t a, uint16_t b) { return vmulq_n_u16(a, b); } static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) { return vmlaq_n_u16(a, b, c); } static inline void vec3_rshift_word(vec_t v[3]) { const uint16x8_t kZero = {0}; v[2] = vextq_u16(v[1], v[2], 7); v[1] = vextq_u16(v[0], v[1], 7); v[0] = vextq_u16(kZero, v[0], 7); } static inline void vec4_rshift_word(vec_t v[4]) { const uint16x8_t kZero = {0}; v[3] = vextq_u16(v[2], v[3], 7); v[2] = vextq_u16(v[1], v[2], 7); v[1] = vextq_u16(v[0], v[1], 7); v[0] = vextq_u16(kZero, v[0], 7); } static inline vec_t vec_merge_3_5(vec_t left, vec_t right) { return vextq_u16(left, right, 5); } static inline uint16_t vec_get_word(vec_t v, unsigned i) { return v[i]; } #if !defined(OPENSSL_AARCH64) static inline vec_t vec_broadcast_bit(vec_t a) { a = (vec_t)vshrq_n_s16(((int16x8_t)a) << 15, 15); return vdupq_lane_u16(vget_low_u16(a), 0); } static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) { vec_t carry_s = {0}; vec_t carry_a = {0}; const vec_t kZero = {0}; for (int i = 0; i < 6; i++) { vec_t next_carry_s = a_s[i] >> 15; a_s[i] <<= 1; a_s[i] |= vextq_u16(kZero, next_carry_s, 7); a_s[i] |= carry_s; carry_s = vextq_u16(next_carry_s, kZero, 7); vec_t next_carry_a = a_a[i] >> 15; a_a[i] <<= 1; a_a[i] |= vextq_u16(kZero, next_carry_a, 7); a_a[i] |= carry_a; carry_a = vextq_u16(next_carry_a, kZero, 7); } } static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) { vec_t carry_s = {0}; vec_t carry_a = {0}; const vec_t kZero = {0}; for (int i = 5; i >= 0; i--) { vec_t next_carry_s = a_s[i] << 15; a_s[i] >>= 1; a_s[i] |= vextq_u16(next_carry_s, kZero, 1); a_s[i] |= carry_s; carry_s = vextq_u16(kZero, next_carry_s, 1); vec_t next_carry_a = a_a[i] << 15; a_a[i] >>= 1; a_a[i] |= vextq_u16(next_carry_a, kZero, 1); a_a[i] |= carry_a; carry_a = vextq_u16(kZero, next_carry_a, 1); } } #endif // !OPENSSL_AARCH64 #endif // (ARM || AARCH64) && NEON // Polynomials in this scheme have N terms. // #define N 701 // Underlying data types and arithmetic operations. // ------------------------------------------------ // Binary polynomials. // poly2 represents a degree-N polynomial over GF(2). The words are in little- // endian order, i.e. the coefficient of x^0 is the LSB of the first word. The // final word is only partially used since N is not a multiple of the word size. // Defined in internal.h: // struct poly2 { // crypto_word_t v[WORDS_PER_POLY]; // }; OPENSSL_UNUSED static void hexdump(const void *void_in, size_t len) { const uint8_t *in = (const uint8_t *)void_in; for (size_t i = 0; i < len; i++) { printf("%02x", in[i]); } printf("\n"); } static void poly2_zero(struct poly2 *p) { OPENSSL_memset(&p->v[0], 0, sizeof(crypto_word_t) * WORDS_PER_POLY); } // word_reverse returns |in| with the bits in reverse order. static crypto_word_t word_reverse(crypto_word_t in) { #if defined(OPENSSL_64_BIT) static const crypto_word_t kMasks[6] = { UINT64_C(0x5555555555555555), UINT64_C(0x3333333333333333), UINT64_C(0x0f0f0f0f0f0f0f0f), UINT64_C(0x00ff00ff00ff00ff), UINT64_C(0x0000ffff0000ffff), UINT64_C(0x00000000ffffffff), }; #else static const crypto_word_t kMasks[5] = { 0x55555555, 0x33333333, 0x0f0f0f0f, 0x00ff00ff, 0x0000ffff, }; #endif for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMasks); i++) { in = ((in >> (1 << i)) & kMasks[i]) | ((in & kMasks[i]) << (1 << i)); } return in; } // lsb_to_all replicates the least-significant bit of |v| to all bits of the // word. This is used in bit-slicing operations to make a vector from a fixed // value. static crypto_word_t lsb_to_all(crypto_word_t v) { return 0u - (v & 1); } // poly2_mod_phiN reduces |p| by Φ(N). static void poly2_mod_phiN(struct poly2 *p) { // m is the term at x^700, replicated to every bit. const crypto_word_t m = lsb_to_all(p->v[WORDS_PER_POLY - 1] >> (BITS_IN_LAST_WORD - 1)); for (size_t i = 0; i < WORDS_PER_POLY; i++) { p->v[i] ^= m; } p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << (BITS_IN_LAST_WORD - 1)) - 1; } // poly2_reverse_700 reverses the order of the first 700 bits of |in| and writes // the result to |out|. static void poly2_reverse_700(struct poly2 *out, const struct poly2 *in) { struct poly2 t; for (size_t i = 0; i < WORDS_PER_POLY; i++) { t.v[i] = word_reverse(in->v[i]); } static const size_t shift = BITS_PER_WORD - ((N-1) % BITS_PER_WORD); for (size_t i = 0; i < WORDS_PER_POLY-1; i++) { out->v[i] = t.v[WORDS_PER_POLY-1-i] >> shift; out->v[i] |= t.v[WORDS_PER_POLY-2-i] << (BITS_PER_WORD - shift); } out->v[WORDS_PER_POLY-1] = t.v[0] >> shift; } // poly2_cswap exchanges the values of |a| and |b| if |swap| is all ones. static void poly2_cswap(struct poly2 *a, struct poly2 *b, crypto_word_t swap) { for (size_t i = 0; i < WORDS_PER_POLY; i++) { const crypto_word_t sum = swap & (a->v[i] ^ b->v[i]); a->v[i] ^= sum; b->v[i] ^= sum; } } // poly2_fmadd sets |out| to |out| + |in| * m, where m is either // |CONSTTIME_TRUE_W| or |CONSTTIME_FALSE_W|. static void poly2_fmadd(struct poly2 *out, const struct poly2 *in, crypto_word_t m) { for (size_t i = 0; i < WORDS_PER_POLY; i++) { out->v[i] ^= in->v[i] & m; } } // poly2_lshift1 left-shifts |p| by one bit. static void poly2_lshift1(struct poly2 *p) { crypto_word_t carry = 0; for (size_t i = 0; i < WORDS_PER_POLY; i++) { const crypto_word_t next_carry = p->v[i] >> (BITS_PER_WORD - 1); p->v[i] <<= 1; p->v[i] |= carry; carry = next_carry; } } // poly2_rshift1 right-shifts |p| by one bit. static void poly2_rshift1(struct poly2 *p) { crypto_word_t carry = 0; for (size_t i = WORDS_PER_POLY - 1; i < WORDS_PER_POLY; i--) { const crypto_word_t next_carry = p->v[i] & 1; p->v[i] >>= 1; p->v[i] |= carry << (BITS_PER_WORD - 1); carry = next_carry; } } // poly2_clear_top_bits clears the bits in the final word that are only for // alignment. static void poly2_clear_top_bits(struct poly2 *p) { p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << BITS_IN_LAST_WORD) - 1; } // poly2_top_bits_are_clear returns one iff the extra bits in the final words of // |p| are zero. static int poly2_top_bits_are_clear(const struct poly2 *p) { return (p->v[WORDS_PER_POLY - 1] & ~((UINT64_C(1) << BITS_IN_LAST_WORD) - 1)) == 0; } // Ternary polynomials. // poly3 represents a degree-N polynomial over GF(3). Each coefficient is // bitsliced across the |s| and |a| arrays, like this: // // s | a | value // ----------------- // 0 | 0 | 0 // 0 | 1 | 1 // 1 | 1 | -1 (aka 2) // 1 | 0 | // // ('s' is for sign, and 'a' is the absolute value.) // // Once bitsliced as such, the following circuits can be used to implement // addition and multiplication mod 3: // // (s3, a3) = (s1, a1) × (s2, a2) // a3 = a1 ∧ a2 // s3 = (s1 ⊕ s2) ∧ a3 // // (s3, a3) = (s1, a1) + (s2, a2) // t = s1 ⊕ a2 // s3 = t ∧ (s2 ⊕ a1) // a3 = (a1 ⊕ a2) ∨ (t ⊕ s2) // // (s3, a3) = (s1, a1) - (s2, a2) // t = a1 ⊕ a2 // s3 = (s1 ⊕ a2) ∧ (t ⊕ s2) // a3 = t ∨ (s1 ⊕ s2) // // Negating a value just involves XORing s by a. // // struct poly3 { // struct poly2 s, a; // }; OPENSSL_UNUSED static void poly3_print(const struct poly3 *in) { struct poly3 p; OPENSSL_memcpy(&p, in, sizeof(p)); p.s.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1; p.a.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1; printf("{["); for (unsigned i = 0; i < WORDS_PER_POLY; i++) { if (i) { printf(" "); } printf(BN_HEX_FMT2, p.s.v[i]); } printf("] ["); for (unsigned i = 0; i < WORDS_PER_POLY; i++) { if (i) { printf(" "); } printf(BN_HEX_FMT2, p.a.v[i]); } printf("]}\n"); } static void poly3_zero(struct poly3 *p) { poly2_zero(&p->s); poly2_zero(&p->a); } // poly3_reverse_700 reverses the order of the first 700 terms of |in| and // writes them to |out|. static void poly3_reverse_700(struct poly3 *out, const struct poly3 *in) { poly2_reverse_700(&out->a, &in->a); poly2_reverse_700(&out->s, &in->s); } // poly3_word_mul sets (|out_s|, |out_a|) to (|s1|, |a1|) × (|s2|, |a2|). static void poly3_word_mul(crypto_word_t *out_s, crypto_word_t *out_a, const crypto_word_t s1, const crypto_word_t a1, const crypto_word_t s2, const crypto_word_t a2) { *out_a = a1 & a2; *out_s = (s1 ^ s2) & *out_a; } // poly3_word_add sets (|out_s|, |out_a|) to (|s1|, |a1|) + (|s2|, |a2|). static void poly3_word_add(crypto_word_t *out_s, crypto_word_t *out_a, const crypto_word_t s1, const crypto_word_t a1, const crypto_word_t s2, const crypto_word_t a2) { const crypto_word_t t = s1 ^ a2; *out_s = t & (s2 ^ a1); *out_a = (a1 ^ a2) | (t ^ s2); } // poly3_word_sub sets (|out_s|, |out_a|) to (|s1|, |a1|) - (|s2|, |a2|). static void poly3_word_sub(crypto_word_t *out_s, crypto_word_t *out_a, const crypto_word_t s1, const crypto_word_t a1, const crypto_word_t s2, const crypto_word_t a2) { const crypto_word_t t = a1 ^ a2; *out_s = (s1 ^ a2) & (t ^ s2); *out_a = t | (s1 ^ s2); } // poly3_mul_const sets |p| to |p|×m, where m = (ms, ma). static void poly3_mul_const(struct poly3 *p, crypto_word_t ms, crypto_word_t ma) { ms = lsb_to_all(ms); ma = lsb_to_all(ma); for (size_t i = 0; i < WORDS_PER_POLY; i++) { poly3_word_mul(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], ms, ma); } } // poly3_fmadd sets |out| to |out| - |in|×m, where m is (ms, ma). static void poly3_fmsub(struct poly3 *RESTRICT out, const struct poly3 *RESTRICT in, crypto_word_t ms, crypto_word_t ma) { crypto_word_t product_s, product_a; for (size_t i = 0; i < WORDS_PER_POLY; i++) { poly3_word_mul(&product_s, &product_a, in->s.v[i], in->a.v[i], ms, ma); poly3_word_sub(&out->s.v[i], &out->a.v[i], out->s.v[i], out->a.v[i], product_s, product_a); } } // final_bit_to_all replicates the bit in the final position of the last word to // all the bits in the word. static crypto_word_t final_bit_to_all(crypto_word_t v) { return lsb_to_all(v >> (BITS_IN_LAST_WORD - 1)); } // poly3_top_bits_are_clear returns one iff the extra bits in the final words of // |p| are zero. OPENSSL_UNUSED static int poly3_top_bits_are_clear(const struct poly3 *p) { return poly2_top_bits_are_clear(&p->s) && poly2_top_bits_are_clear(&p->a); } // poly3_mod_phiN reduces |p| by Φ(N). static void poly3_mod_phiN(struct poly3 *p) { // In order to reduce by Φ(N) we subtract by the value of the greatest // coefficient. const crypto_word_t factor_s = final_bit_to_all(p->s.v[WORDS_PER_POLY - 1]); const crypto_word_t factor_a = final_bit_to_all(p->a.v[WORDS_PER_POLY - 1]); for (size_t i = 0; i < WORDS_PER_POLY; i++) { poly3_word_sub(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], factor_s, factor_a); } poly2_clear_top_bits(&p->s); poly2_clear_top_bits(&p->a); } static void poly3_cswap(struct poly3 *a, struct poly3 *b, crypto_word_t swap) { poly2_cswap(&a->s, &b->s, swap); poly2_cswap(&a->a, &b->a, swap); } static void poly3_lshift1(struct poly3 *p) { poly2_lshift1(&p->s); poly2_lshift1(&p->a); } static void poly3_rshift1(struct poly3 *p) { poly2_rshift1(&p->s); poly2_rshift1(&p->a); } // poly3_span represents a pointer into a poly3. struct poly3_span { crypto_word_t *s; crypto_word_t *a; }; // poly3_span_add adds |n| words of values from |a| and |b| and writes the // result to |out|. static void poly3_span_add(const struct poly3_span *out, const struct poly3_span *a, const struct poly3_span *b, size_t n) { for (size_t i = 0; i < n; i++) { poly3_word_add(&out->s[i], &out->a[i], a->s[i], a->a[i], b->s[i], b->a[i]); } } // poly3_span_sub subtracts |n| words of |b| from |n| words of |a|. static void poly3_span_sub(const struct poly3_span *a, const struct poly3_span *b, size_t n) { for (size_t i = 0; i < n; i++) { poly3_word_sub(&a->s[i], &a->a[i], a->s[i], a->a[i], b->s[i], b->a[i]); } } // poly3_mul_aux is a recursive function that multiplies |n| words from |a| and // |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements of // |scratch| and the function recurses, except if |n| == 1, when |scratch| isn't // used and the recursion stops. For |n| in {11, 22}, the transitive total // amount of |scratch| needed happens to be 2n+2. static void poly3_mul_aux(const struct poly3_span *out, const struct poly3_span *scratch, const struct poly3_span *a, const struct poly3_span *b, size_t n) { if (n == 1) { crypto_word_t r_s_low = 0, r_s_high = 0, r_a_low = 0, r_a_high = 0; crypto_word_t b_s = b->s[0], b_a = b->a[0]; const crypto_word_t a_s = a->s[0], a_a = a->a[0]; for (size_t i = 0; i < BITS_PER_WORD; i++) { // Multiply (s, a) by the next value from (b_s, b_a). crypto_word_t m_s, m_a; poly3_word_mul(&m_s, &m_a, a_s, a_a, lsb_to_all(b_s), lsb_to_all(b_a)); b_s >>= 1; b_a >>= 1; if (i == 0) { // Special case otherwise the code tries to shift by BITS_PER_WORD // below, which is undefined. r_s_low = m_s; r_a_low = m_a; continue; } // Shift the multiplication result to the correct position. const crypto_word_t m_s_low = m_s << i; const crypto_word_t m_s_high = m_s >> (BITS_PER_WORD - i); const crypto_word_t m_a_low = m_a << i; const crypto_word_t m_a_high = m_a >> (BITS_PER_WORD - i); // Add into the result. poly3_word_add(&r_s_low, &r_a_low, r_s_low, r_a_low, m_s_low, m_a_low); poly3_word_add(&r_s_high, &r_a_high, r_s_high, r_a_high, m_s_high, m_a_high); } out->s[0] = r_s_low; out->s[1] = r_s_high; out->a[0] = r_a_low; out->a[1] = r_a_high; return; } // Karatsuba multiplication. // https://en.wikipedia.org/wiki/Karatsuba_algorithm // When |n| is odd, the two "halves" will have different lengths. The first // is always the smaller. const size_t low_len = n / 2; const size_t high_len = n - low_len; const struct poly3_span a_high = {&a->s[low_len], &a->a[low_len]}; const struct poly3_span b_high = {&b->s[low_len], &b->a[low_len]}; // Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second // half. const struct poly3_span a_cross_sum = *out; const struct poly3_span b_cross_sum = {&out->s[high_len], &out->a[high_len]}; poly3_span_add(&a_cross_sum, a, &a_high, low_len); poly3_span_add(&b_cross_sum, b, &b_high, low_len); if (high_len != low_len) { a_cross_sum.s[low_len] = a_high.s[low_len]; a_cross_sum.a[low_len] = a_high.a[low_len]; b_cross_sum.s[low_len] = b_high.s[low_len]; b_cross_sum.a[low_len] = b_high.a[low_len]; } const struct poly3_span child_scratch = {&scratch->s[2 * high_len], &scratch->a[2 * high_len]}; const struct poly3_span out_mid = {&out->s[low_len], &out->a[low_len]}; const struct poly3_span out_high = {&out->s[2 * low_len], &out->a[2 * low_len]}; // Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer. poly3_mul_aux(scratch, &child_scratch, &a_cross_sum, &b_cross_sum, high_len); // Calculate a_1 × b_1. poly3_mul_aux(&out_high, &child_scratch, &a_high, &b_high, high_len); // Calculate a_0 × b_0. poly3_mul_aux(out, &child_scratch, a, b, low_len); // Subtract those last two products from the first. poly3_span_sub(scratch, out, low_len * 2); poly3_span_sub(scratch, &out_high, high_len * 2); // Add the middle product into the output. poly3_span_add(&out_mid, &out_mid, scratch, high_len * 2); } // HRSS_poly3_mul sets |*out| to |x|×|y| mod Φ(N). void HRSS_poly3_mul(struct poly3 *out, const struct poly3 *x, const struct poly3 *y) { crypto_word_t prod_s[WORDS_PER_POLY * 2]; crypto_word_t prod_a[WORDS_PER_POLY * 2]; crypto_word_t scratch_s[WORDS_PER_POLY * 2 + 2]; crypto_word_t scratch_a[WORDS_PER_POLY * 2 + 2]; const struct poly3_span prod_span = {prod_s, prod_a}; const struct poly3_span scratch_span = {scratch_s, scratch_a}; const struct poly3_span x_span = {(crypto_word_t *)x->s.v, (crypto_word_t *)x->a.v}; const struct poly3_span y_span = {(crypto_word_t *)y->s.v, (crypto_word_t *)y->a.v}; poly3_mul_aux(&prod_span, &scratch_span, &x_span, &y_span, WORDS_PER_POLY); // |prod| needs to be reduced mod (𝑥^n - 1), which just involves adding the // upper-half to the lower-half. However, N is 701, which isn't a multiple of // BITS_PER_WORD, so the upper-half vectors all have to be shifted before // being added to the lower-half. for (size_t i = 0; i < WORDS_PER_POLY; i++) { crypto_word_t v_s = prod_s[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD; v_s |= prod_s[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD); crypto_word_t v_a = prod_a[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD; v_a |= prod_a[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD); poly3_word_add(&out->s.v[i], &out->a.v[i], prod_s[i], prod_a[i], v_s, v_a); } poly3_mod_phiN(out); } #if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64) // poly3_vec_cswap swaps (|a_s|, |a_a|) and (|b_s|, |b_a|) if |swap| is // |0xff..ff|. Otherwise, |swap| must be zero. static inline void poly3_vec_cswap(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6], vec_t b_a[6], const vec_t swap) { for (int i = 0; i < 6; i++) { const vec_t sum_s = swap & (a_s[i] ^ b_s[i]); a_s[i] ^= sum_s; b_s[i] ^= sum_s; const vec_t sum_a = swap & (a_a[i] ^ b_a[i]); a_a[i] ^= sum_a; b_a[i] ^= sum_a; } } // poly3_vec_fmsub subtracts (|ms|, |ma|) × (|b_s|, |b_a|) from (|a_s|, |a_a|). static inline void poly3_vec_fmsub(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6], vec_t b_a[6], const vec_t ms, const vec_t ma) { for (int i = 0; i < 6; i++) { // See the bitslice formula, above. const vec_t s = b_s[i]; const vec_t a = b_a[i]; const vec_t product_a = a & ma; const vec_t product_s = (s ^ ms) & product_a; const vec_t out_s = a_s[i]; const vec_t out_a = a_a[i]; const vec_t t = out_a ^ product_a; a_s[i] = (out_s ^ product_a) & (t ^ product_s); a_a[i] = t | (out_s ^ product_s); } } // poly3_invert_vec sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod // Φ(N). static void poly3_invert_vec(struct poly3 *out, const struct poly3 *in) { // This algorithm is taken from section 7.1 of [SAFEGCD]. const vec_t kZero = {0}; const vec_t kOne = {1}; static const uint8_t kBottomSixtyOne[sizeof(vec_t)] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f}; vec_t v_s[6], v_a[6], r_s[6], r_a[6], f_s[6], f_a[6], g_s[6], g_a[6]; // v = 0 memset(&v_s, 0, sizeof(v_s)); memset(&v_a, 0, sizeof(v_a)); // r = 1 memset(&r_s, 0, sizeof(r_s)); memset(&r_a, 0, sizeof(r_a)); r_a[0] = kOne; // f = all ones. memset(f_s, 0, sizeof(f_s)); memset(f_a, 0xff, 5 * sizeof(vec_t)); memcpy(&f_a[5], kBottomSixtyOne, sizeof(kBottomSixtyOne)); // g is the reversal of |in|. struct poly3 in_reversed; poly3_reverse_700(&in_reversed, in); g_s[5] = kZero; memcpy(&g_s, &in_reversed.s.v, WORDS_PER_POLY * sizeof(crypto_word_t)); g_a[5] = kZero; memcpy(&g_a, &in_reversed.a.v, WORDS_PER_POLY * sizeof(crypto_word_t)); int delta = 1; for (size_t i = 0; i < (2*(N-1)) - 1; i++) { poly3_vec_lshift1(v_s, v_a); const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1; const crypto_word_t delta_is_non_negative = delta_sign_bit - 1; const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta); const vec_t g_has_constant_term = vec_broadcast_bit(g_a[0]); const vec_t mask_w = {delta_is_non_negative & delta_is_non_zero}; const vec_t mask = vec_broadcast_bit(mask_w) & g_has_constant_term; const vec_t c_a = vec_broadcast_bit(f_a[0] & g_a[0]); const vec_t c_s = vec_broadcast_bit((f_s[0] ^ g_s[0]) & c_a); delta = constant_time_select_int(lsb_to_all(mask[0]), -delta, delta); delta++; poly3_vec_cswap(f_s, f_a, g_s, g_a, mask); poly3_vec_fmsub(g_s, g_a, f_s, f_a, c_s, c_a); poly3_vec_rshift1(g_s, g_a); poly3_vec_cswap(v_s, v_a, r_s, r_a, mask); poly3_vec_fmsub(r_s, r_a, v_s, v_a, c_s, c_a); } assert(delta == 0); memcpy(out->s.v, v_s, WORDS_PER_POLY * sizeof(crypto_word_t)); memcpy(out->a.v, v_a, WORDS_PER_POLY * sizeof(crypto_word_t)); poly3_mul_const(out, vec_get_word(f_s[0], 0), vec_get_word(f_a[0], 0)); poly3_reverse_700(out, out); } #endif // HRSS_HAVE_VECTOR_UNIT // HRSS_poly3_invert sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod // Φ(N). void HRSS_poly3_invert(struct poly3 *out, const struct poly3 *in) { // The vector version of this function seems slightly slower on AArch64, but // is useful on ARMv7 and x86-64. #if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64) if (vec_capable()) { poly3_invert_vec(out, in); return; } #endif // This algorithm is taken from section 7.1 of [SAFEGCD]. struct poly3 v, r, f, g; // v = 0 poly3_zero(&v); // r = 1 poly3_zero(&r); r.a.v[0] = 1; // f = all ones. OPENSSL_memset(&f.s, 0, sizeof(struct poly2)); OPENSSL_memset(&f.a, 0xff, sizeof(struct poly2)); f.a.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD; // g is the reversal of |in|. poly3_reverse_700(&g, in); int delta = 1; for (size_t i = 0; i < (2*(N-1)) - 1; i++) { poly3_lshift1(&v); const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1; const crypto_word_t delta_is_non_negative = delta_sign_bit - 1; const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta); const crypto_word_t g_has_constant_term = lsb_to_all(g.a.v[0]); const crypto_word_t mask = g_has_constant_term & delta_is_non_negative & delta_is_non_zero; crypto_word_t c_s, c_a; poly3_word_mul(&c_s, &c_a, f.s.v[0], f.a.v[0], g.s.v[0], g.a.v[0]); c_s = lsb_to_all(c_s); c_a = lsb_to_all(c_a); delta = constant_time_select_int(mask, -delta, delta); delta++; poly3_cswap(&f, &g, mask); poly3_fmsub(&g, &f, c_s, c_a); poly3_rshift1(&g); poly3_cswap(&v, &r, mask); poly3_fmsub(&r, &v, c_s, c_a); } assert(delta == 0); poly3_mul_const(&v, f.s.v[0], f.a.v[0]); poly3_reverse_700(out, &v); } // Polynomials in Q. // Coefficients are reduced mod Q. (Q is clearly not prime, therefore the // coefficients do not form a field.) #define Q 8192 // VECS_PER_POLY is the number of 128-bit vectors needed to represent a // polynomial. #define COEFFICIENTS_PER_VEC (sizeof(vec_t) / sizeof(uint16_t)) #define VECS_PER_POLY ((N + COEFFICIENTS_PER_VEC - 1) / COEFFICIENTS_PER_VEC) // poly represents a polynomial with coefficients mod Q. Note that, while Q is a // power of two, this does not operate in GF(Q). That would be a binary field // but this is simply mod Q. Thus the coefficients are not a field. // // Coefficients are ordered little-endian, thus the coefficient of x^0 is the // first element of the array. struct poly { #if defined(HRSS_HAVE_VECTOR_UNIT) union { // N + 3 = 704, which is a multiple of 64 and thus aligns things, esp for // the vector code. uint16_t v[N + 3]; vec_t vectors[VECS_PER_POLY]; }; #else // Even if !HRSS_HAVE_VECTOR_UNIT, external assembly may be called that // requires alignment. alignas(16) uint16_t v[N + 3]; #endif }; OPENSSL_UNUSED static void poly_print(const struct poly *p) { printf("["); for (unsigned i = 0; i < N; i++) { if (i) { printf(" "); } printf("%d", p->v[i]); } printf("]\n"); } #if defined(HRSS_HAVE_VECTOR_UNIT) // poly_mul_vec_aux is a recursive function that multiplies |n| words from |a| // and |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements // of |scratch| and the function recurses, except if |n| < 3, when |scratch| // isn't used and the recursion stops. If |n| == |VECS_PER_POLY| then |scratch| // needs 172 elements. static void poly_mul_vec_aux(vec_t *restrict out, vec_t *restrict scratch, const vec_t *restrict a, const vec_t *restrict b, const size_t n) { // In [HRSS], the technique they used for polynomial multiplication is // described: they start with Toom-4 at the top level and then two layers of // Karatsuba. Karatsuba is a specific instance of the general Toom–Cook // decomposition, which splits an input n-ways and produces 2n-1 // multiplications of those parts. So, starting with 704 coefficients (rounded // up from 701 to have more factors of two), Toom-4 gives seven // multiplications of degree-174 polynomials. Each round of Karatsuba (which // is Toom-2) increases the number of multiplications by a factor of three // while halving the size of the values being multiplied. So two rounds gives // 63 multiplications of degree-44 polynomials. Then they (I think) form // vectors by gathering all 63 coefficients of each power together, for each // input, and doing more rounds of Karatsuba on the vectors until they bottom- // out somewhere with schoolbook multiplication. // // I tried something like that for NEON. NEON vectors are 128 bits so hold // eight coefficients. I wrote a function that did Karatsuba on eight // multiplications at the same time, using such vectors, and a Go script that // decomposed from degree-704, with Karatsuba in non-transposed form, until it // reached multiplications of degree-44. It batched up those 81 // multiplications into lots of eight with a single one left over (which was // handled directly). // // It worked, but it was significantly slower than the dumb algorithm used // below. Potentially that was because I misunderstood how [HRSS] did it, or // because Clang is bad at generating good code from NEON intrinsics on ARMv7. // (Which is true: the code generated by Clang for the below is pretty crap.) // // This algorithm is much simpler. It just does Karatsuba decomposition all // the way down and never transposes. When it gets down to degree-16 or // degree-24 values, they are multiplied using schoolbook multiplication and // vector intrinsics. The vector operations form each of the eight phase- // shifts of one of the inputs, point-wise multiply, and then add into the // result at the correct place. This means that 33% (degree-16) or 25% // (degree-24) of the multiplies and adds are wasted, but it does ok. if (n == 2) { vec_t result[4]; vec_t vec_a[3]; static const vec_t kZero = {0}; vec_a[0] = a[0]; vec_a[1] = a[1]; vec_a[2] = kZero; result[0] = vec_mul(vec_a[0], vec_get_word(b[0], 0)); result[1] = vec_mul(vec_a[1], vec_get_word(b[0], 0)); result[1] = vec_fma(result[1], vec_a[0], vec_get_word(b[1], 0)); result[2] = vec_mul(vec_a[1], vec_get_word(b[1], 0)); result[3] = kZero; vec3_rshift_word(vec_a); #define BLOCK(x, y) \ do { \ result[x + 0] = \ vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \ result[x + 1] = \ vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \ result[x + 2] = \ vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \ } while (0) BLOCK(0, 1); BLOCK(1, 9); vec3_rshift_word(vec_a); BLOCK(0, 2); BLOCK(1, 10); vec3_rshift_word(vec_a); BLOCK(0, 3); BLOCK(1, 11); vec3_rshift_word(vec_a); BLOCK(0, 4); BLOCK(1, 12); vec3_rshift_word(vec_a); BLOCK(0, 5); BLOCK(1, 13); vec3_rshift_word(vec_a); BLOCK(0, 6); BLOCK(1, 14); vec3_rshift_word(vec_a); BLOCK(0, 7); BLOCK(1, 15); #undef BLOCK memcpy(out, result, sizeof(result)); return; } if (n == 3) { vec_t result[6]; vec_t vec_a[4]; static const vec_t kZero = {0}; vec_a[0] = a[0]; vec_a[1] = a[1]; vec_a[2] = a[2]; vec_a[3] = kZero; result[0] = vec_mul(a[0], vec_get_word(b[0], 0)); result[1] = vec_mul(a[1], vec_get_word(b[0], 0)); result[2] = vec_mul(a[2], vec_get_word(b[0], 0)); #define BLOCK_PRE(x, y) \ do { \ result[x + 0] = \ vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \ result[x + 1] = \ vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \ result[x + 2] = vec_mul(vec_a[2], vec_get_word(b[y / 8], y % 8)); \ } while (0) BLOCK_PRE(1, 8); BLOCK_PRE(2, 16); result[5] = kZero; vec4_rshift_word(vec_a); #define BLOCK(x, y) \ do { \ result[x + 0] = \ vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \ result[x + 1] = \ vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \ result[x + 2] = \ vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \ result[x + 3] = \ vec_fma(result[x + 3], vec_a[3], vec_get_word(b[y / 8], y % 8)); \ } while (0) BLOCK(0, 1); BLOCK(1, 9); BLOCK(2, 17); vec4_rshift_word(vec_a); BLOCK(0, 2); BLOCK(1, 10); BLOCK(2, 18); vec4_rshift_word(vec_a); BLOCK(0, 3); BLOCK(1, 11); BLOCK(2, 19); vec4_rshift_word(vec_a); BLOCK(0, 4); BLOCK(1, 12); BLOCK(2, 20); vec4_rshift_word(vec_a); BLOCK(0, 5); BLOCK(1, 13); BLOCK(2, 21); vec4_rshift_word(vec_a); BLOCK(0, 6); BLOCK(1, 14); BLOCK(2, 22); vec4_rshift_word(vec_a); BLOCK(0, 7); BLOCK(1, 15); BLOCK(2, 23); #undef BLOCK #undef BLOCK_PRE memcpy(out, result, sizeof(result)); return; } // Karatsuba multiplication. // https://en.wikipedia.org/wiki/Karatsuba_algorithm // When |n| is odd, the two "halves" will have different lengths. The first is // always the smaller. const size_t low_len = n / 2; const size_t high_len = n - low_len; const vec_t *a_high = &a[low_len]; const vec_t *b_high = &b[low_len]; // Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second // half. for (size_t i = 0; i < low_len; i++) { out[i] = vec_add(a_high[i], a[i]); out[high_len + i] = vec_add(b_high[i], b[i]); } if (high_len != low_len) { out[low_len] = a_high[low_len]; out[high_len + low_len] = b_high[low_len]; } vec_t *const child_scratch = &scratch[2 * high_len]; // Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer. poly_mul_vec_aux(scratch, child_scratch, out, &out[high_len], high_len); // Calculate a_1 × b_1. poly_mul_vec_aux(&out[low_len * 2], child_scratch, a_high, b_high, high_len); // Calculate a_0 × b_0. poly_mul_vec_aux(out, child_scratch, a, b, low_len); // Subtract those last two products from the first. for (size_t i = 0; i < low_len * 2; i++) { scratch[i] = vec_sub(scratch[i], vec_add(out[i], out[low_len * 2 + i])); } if (low_len != high_len) { scratch[low_len * 2] = vec_sub(scratch[low_len * 2], out[low_len * 4]); scratch[low_len * 2 + 1] = vec_sub(scratch[low_len * 2 + 1], out[low_len * 4 + 1]); } // Add the middle product into the output. for (size_t i = 0; i < high_len * 2; i++) { out[low_len + i] = vec_add(out[low_len + i], scratch[i]); } } // poly_mul_vec sets |*out| to |x|×|y| mod (𝑥^n - 1). static void poly_mul_vec(struct poly *out, const struct poly *x, const struct poly *y) { OPENSSL_memset((uint16_t *)&x->v[N], 0, 3 * sizeof(uint16_t)); OPENSSL_memset((uint16_t *)&y->v[N], 0, 3 * sizeof(uint16_t)); OPENSSL_STATIC_ASSERT(sizeof(out->v) == sizeof(vec_t) * VECS_PER_POLY, "struct poly is the wrong size"); OPENSSL_STATIC_ASSERT(alignof(struct poly) == alignof(vec_t), "struct poly has incorrect alignment"); vec_t prod[VECS_PER_POLY * 2]; vec_t scratch[172]; poly_mul_vec_aux(prod, scratch, x->vectors, y->vectors, VECS_PER_POLY); // |prod| needs to be reduced mod (𝑥^n - 1), which just involves adding the // upper-half to the lower-half. However, N is 701, which isn't a multiple of // the vector size, so the upper-half vectors all have to be shifted before // being added to the lower-half. vec_t *out_vecs = (vec_t *)out->v; for (size_t i = 0; i < VECS_PER_POLY; i++) { const vec_t prev = prod[VECS_PER_POLY - 1 + i]; const vec_t this = prod[VECS_PER_POLY + i]; out_vecs[i] = vec_add(prod[i], vec_merge_3_5(prev, this)); } OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t)); } #endif // HRSS_HAVE_VECTOR_UNIT // poly_mul_novec_aux writes the product of |a| and |b| to |out|, using // |scratch| as scratch space. It'll use Karatsuba if the inputs are large // enough to warrant it. Each call uses 2*ceil(n/2) elements of |scratch| and // the function recurses, except if |n| < 64, when |scratch| isn't used and the // recursion stops. If |n| == |N| then |scratch| needs 1318 elements. static void poly_mul_novec_aux(uint16_t *out, uint16_t *scratch, const uint16_t *a, const uint16_t *b, size_t n) { static const size_t kSchoolbookLimit = 64; if (n < kSchoolbookLimit) { OPENSSL_memset(out, 0, sizeof(uint16_t) * n * 2); for (size_t i = 0; i < n; i++) { for (size_t j = 0; j < n; j++) { out[i + j] += (unsigned) a[i] * b[j]; } } return; } // Karatsuba multiplication. // https://en.wikipedia.org/wiki/Karatsuba_algorithm // When |n| is odd, the two "halves" will have different lengths. The // first is always the smaller. const size_t low_len = n / 2; const size_t high_len = n - low_len; const uint16_t *const a_high = &a[low_len]; const uint16_t *const b_high = &b[low_len]; for (size_t i = 0; i < low_len; i++) { out[i] = a_high[i] + a[i]; out[high_len + i] = b_high[i] + b[i]; } if (high_len != low_len) { out[low_len] = a_high[low_len]; out[high_len + low_len] = b_high[low_len]; } uint16_t *const child_scratch = &scratch[2 * high_len]; poly_mul_novec_aux(scratch, child_scratch, out, &out[high_len], high_len); poly_mul_novec_aux(&out[low_len * 2], child_scratch, a_high, b_high, high_len); poly_mul_novec_aux(out, child_scratch, a, b, low_len); for (size_t i = 0; i < low_len * 2; i++) { scratch[i] -= out[i] + out[low_len * 2 + i]; } if (low_len != high_len) { scratch[low_len * 2] -= out[low_len * 4]; assert(out[low_len * 4 + 1] == 0); } for (size_t i = 0; i < high_len * 2; i++) { out[low_len + i] += scratch[i]; } } // poly_mul_novec sets |*out| to |x|×|y| mod (𝑥^n - 1). static void poly_mul_novec(struct poly *out, const struct poly *x, const struct poly *y) { uint16_t prod[2 * N]; uint16_t scratch[1318]; poly_mul_novec_aux(prod, scratch, x->v, y->v, N); for (size_t i = 0; i < N; i++) { out->v[i] = prod[i] + prod[i + N]; } OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t)); } static void poly_mul(struct poly *r, const struct poly *a, const struct poly *b) { #if defined(POLY_RQ_MUL_ASM) const int has_avx2 = (OPENSSL_ia32cap_P[2] & (1 << 5)) != 0; if (has_avx2) { poly_Rq_mul(r->v, a->v, b->v); return; } #endif #if defined(HRSS_HAVE_VECTOR_UNIT) if (vec_capable()) { poly_mul_vec(r, a, b); return; } #endif // Fallback, non-vector case. poly_mul_novec(r, a, b); } // poly_mul_x_minus_1 sets |p| to |p|×(𝑥 - 1) mod (𝑥^n - 1). static void poly_mul_x_minus_1(struct poly *p) { // Multiplying by (𝑥 - 1) means negating each coefficient and adding in // the value of the previous one. const uint16_t orig_final_coefficient = p->v[N - 1]; for (size_t i = N - 1; i > 0; i--) { p->v[i] = p->v[i - 1] - p->v[i]; } p->v[0] = orig_final_coefficient - p->v[0]; } // poly_mod_phiN sets |p| to |p| mod Φ(N). static void poly_mod_phiN(struct poly *p) { const uint16_t coeff700 = p->v[N - 1]; for (unsigned i = 0; i < N; i++) { p->v[i] -= coeff700; } } // poly_clamp reduces each coefficient mod Q. static void poly_clamp(struct poly *p) { for (unsigned i = 0; i < N; i++) { p->v[i] &= Q - 1; } } // Conversion functions // -------------------- // poly2_from_poly sets |*out| to |in| mod 2. static void poly2_from_poly(struct poly2 *out, const struct poly *in) { crypto_word_t *words = out->v; unsigned shift = 0; crypto_word_t word = 0; for (unsigned i = 0; i < N; i++) { word >>= 1; word |= (crypto_word_t)(in->v[i] & 1) << (BITS_PER_WORD - 1); shift++; if (shift == BITS_PER_WORD) { *words = word; words++; word = 0; shift = 0; } } word >>= BITS_PER_WORD - shift; *words = word; } // mod3 treats |a| as a signed number and returns |a| mod 3. static uint16_t mod3(int16_t a) { const int16_t q = ((int32_t)a * 21845) >> 16; int16_t ret = a - 3 * q; // At this point, |ret| is in {0, 1, 2, 3} and that needs to be mapped to {0, // 1, 2, 0}. return ret & ((ret & (ret >> 1)) - 1); } // poly3_from_poly sets |*out| to |in|. static void poly3_from_poly(struct poly3 *out, const struct poly *in) { crypto_word_t *words_s = out->s.v; crypto_word_t *words_a = out->a.v; crypto_word_t s = 0; crypto_word_t a = 0; unsigned shift = 0; for (unsigned i = 0; i < N; i++) { // This duplicates the 13th bit upwards to the top of the uint16, // essentially treating it as a sign bit and converting into a signed int16. // The signed value is reduced mod 3, yielding {0, 1, 2}. const uint16_t v = mod3((int16_t)(in->v[i] << 3) >> 3); s >>= 1; const crypto_word_t s_bit = (crypto_word_t)(v & 2) << (BITS_PER_WORD - 2); s |= s_bit; a >>= 1; a |= s_bit | (crypto_word_t)(v & 1) << (BITS_PER_WORD - 1); shift++; if (shift == BITS_PER_WORD) { *words_s = s; words_s++; *words_a = a; words_a++; s = a = 0; shift = 0; } } s >>= BITS_PER_WORD - shift; a >>= BITS_PER_WORD - shift; *words_s = s; *words_a = a; } // poly3_from_poly_checked sets |*out| to |in|, which has coefficients in {0, 1, // Q-1}. It returns a mask indicating whether all coefficients were found to be // in that set. static crypto_word_t poly3_from_poly_checked(struct poly3 *out, const struct poly *in) { crypto_word_t *words_s = out->s.v; crypto_word_t *words_a = out->a.v; crypto_word_t s = 0; crypto_word_t a = 0; unsigned shift = 0; crypto_word_t ok = CONSTTIME_TRUE_W; for (unsigned i = 0; i < N; i++) { const uint16_t v = in->v[i]; // Maps {0, 1, Q-1} to {0, 1, 2}. uint16_t mod3 = v & 3; mod3 ^= mod3 >> 1; const uint16_t expected = (uint16_t)((~((mod3 >> 1) - 1)) | mod3) % Q; ok &= constant_time_eq_w(v, expected); s >>= 1; const crypto_word_t s_bit = (crypto_word_t)(mod3 & 2) << (BITS_PER_WORD - 2); s |= s_bit; a >>= 1; a |= s_bit | (crypto_word_t)(mod3 & 1) << (BITS_PER_WORD - 1); shift++; if (shift == BITS_PER_WORD) { *words_s = s; words_s++; *words_a = a; words_a++; s = a = 0; shift = 0; } } s >>= BITS_PER_WORD - shift; a >>= BITS_PER_WORD - shift; *words_s = s; *words_a = a; return ok; } static void poly_from_poly2(struct poly *out, const struct poly2 *in) { const crypto_word_t *words = in->v; unsigned shift = 0; crypto_word_t word = *words; for (unsigned i = 0; i < N; i++) { out->v[i] = word & 1; word >>= 1; shift++; if (shift == BITS_PER_WORD) { words++; word = *words; shift = 0; } } } static void poly_from_poly3(struct poly *out, const struct poly3 *in) { const crypto_word_t *words_s = in->s.v; const crypto_word_t *words_a = in->a.v; crypto_word_t word_s = ~(*words_s); crypto_word_t word_a = *words_a; unsigned shift = 0; for (unsigned i = 0; i < N; i++) { out->v[i] = (uint16_t)(word_s & 1) - 1; out->v[i] |= word_a & 1; word_s >>= 1; word_a >>= 1; shift++; if (shift == BITS_PER_WORD) { words_s++; words_a++; word_s = ~(*words_s); word_a = *words_a; shift = 0; } } } // Polynomial inversion // -------------------- // poly_invert_mod2 sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod // Φ(N)), all mod 2. This isn't useful in itself, but is part of doing inversion // mod Q. static void poly_invert_mod2(struct poly *out, const struct poly *in) { // This algorithm is taken from section 7.1 of [SAFEGCD]. struct poly2 v, r, f, g; // v = 0 poly2_zero(&v); // r = 1 poly2_zero(&r); r.v[0] = 1; // f = all ones. OPENSSL_memset(&f, 0xff, sizeof(struct poly2)); f.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD; // g is the reversal of |in|. poly2_from_poly(&g, in); poly2_mod_phiN(&g); poly2_reverse_700(&g, &g); int delta = 1; for (size_t i = 0; i < (2*(N-1)) - 1; i++) { poly2_lshift1(&v); const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1; const crypto_word_t delta_is_non_negative = delta_sign_bit - 1; const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta); const crypto_word_t g_has_constant_term = lsb_to_all(g.v[0]); const crypto_word_t mask = g_has_constant_term & delta_is_non_negative & delta_is_non_zero; const crypto_word_t c = lsb_to_all(f.v[0] & g.v[0]); delta = constant_time_select_int(mask, -delta, delta); delta++; poly2_cswap(&f, &g, mask); poly2_fmadd(&g, &f, c); poly2_rshift1(&g); poly2_cswap(&v, &r, mask); poly2_fmadd(&r, &v, c); } assert(delta == 0); assert(f.v[0] & 1); poly2_reverse_700(&v, &v); poly_from_poly2(out, &v); } // poly_invert sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod Φ(N)). static void poly_invert(struct poly *out, const struct poly *in) { // Inversion mod Q, which is done based on the result of inverting mod // 2. See [NTRUTN14] paper, bottom of page two. struct poly a, *b, tmp; // a = -in. for (unsigned i = 0; i < N; i++) { a.v[i] = -in->v[i]; } // b = in^-1 mod 2. b = out; poly_invert_mod2(b, in); // We are working mod Q=2**13 and we need to iterate ceil(log_2(13)) // times, which is four. for (unsigned i = 0; i < 4; i++) { poly_mul(&tmp, &a, b); tmp.v[0] += 2; poly_mul(b, b, &tmp); } } // Marshal and unmarshal functions for various basic types. // -------------------------------------------------------- #define POLY_BYTES 1138 // poly_marshal serialises all but the final coefficient of |in| to |out|. static void poly_marshal(uint8_t out[POLY_BYTES], const struct poly *in) { const uint16_t *p = in->v; for (size_t i = 0; i < N / 8; i++) { out[0] = p[0]; out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5); out[2] = p[1] >> 3; out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2); out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7); out[5] = p[3] >> 1; out[6] = (0xf & (p[3] >> 9)) | ((p[4] & 0x0f) << 4); out[7] = p[4] >> 4; out[8] = (1 & (p[4] >> 12)) | ((p[5] & 0x7f) << 1); out[9] = (0x3f & (p[5] >> 7)) | ((p[6] & 0x03) << 6); out[10] = p[6] >> 2; out[11] = (7 & (p[6] >> 10)) | ((p[7] & 0x1f) << 3); out[12] = p[7] >> 5; p += 8; out += 13; } // There are four remaining values. out[0] = p[0]; out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5); out[2] = p[1] >> 3; out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2); out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7); out[5] = p[3] >> 1; out[6] = 0xf & (p[3] >> 9); } // poly_unmarshal parses the output of |poly_marshal| and sets |out| such that // all but the final coefficients match, and the final coefficient is calculated // such that evaluating |out| at one results in zero. It returns one on success // or zero if |in| is an invalid encoding. static int poly_unmarshal(struct poly *out, const uint8_t in[POLY_BYTES]) { uint16_t *p = out->v; for (size_t i = 0; i < N / 8; i++) { p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8; p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 | (uint16_t)(in[3] & 3) << 11; p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6; p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 | (uint16_t)(in[6] & 0xf) << 9; p[4] = (uint16_t)(in[6] >> 4) | (uint16_t)(in[7]) << 4 | (uint16_t)(in[8] & 1) << 12; p[5] = (uint16_t)(in[8] >> 1) | (uint16_t)(in[9] & 0x3f) << 7; p[6] = (uint16_t)(in[9] >> 6) | (uint16_t)(in[10]) << 2 | (uint16_t)(in[11] & 7) << 10; p[7] = (uint16_t)(in[11] >> 3) | (uint16_t)(in[12]) << 5; p += 8; in += 13; } // There are four coefficients remaining. p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8; p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 | (uint16_t)(in[3] & 3) << 11; p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6; p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 | (uint16_t)(in[6] & 0xf) << 9; for (unsigned i = 0; i < N - 1; i++) { out->v[i] = (int16_t)(out->v[i] << 3) >> 3; } // There are four unused bits in the last byte. We require them to be zero. if ((in[6] & 0xf0) != 0) { return 0; } // Set the final coefficient as specifed in [HRSSNIST] 1.9.2 step 6. uint32_t sum = 0; for (size_t i = 0; i < N - 1; i++) { sum += out->v[i]; } out->v[N - 1] = (uint16_t)(0u - sum); return 1; } // mod3_from_modQ maps {0, 1, Q-1, 65535} -> {0, 1, 2, 2}. Note that |v| may // have an invalid value when processing attacker-controlled inputs. static uint16_t mod3_from_modQ(uint16_t v) { v &= 3; return v ^ (v >> 1); } // poly_marshal_mod3 marshals |in| to |out| where the coefficients of |in| are // all in {0, 1, Q-1, 65535} and |in| is mod Φ(N). (Note that coefficients may // have invalid values when processing attacker-controlled inputs.) static void poly_marshal_mod3(uint8_t out[HRSS_POLY3_BYTES], const struct poly *in) { const uint16_t *coeffs = in->v; // Only 700 coefficients are marshaled because in[700] must be zero. assert(coeffs[N-1] == 0); for (size_t i = 0; i < HRSS_POLY3_BYTES; i++) { const uint16_t coeffs0 = mod3_from_modQ(coeffs[0]); const uint16_t coeffs1 = mod3_from_modQ(coeffs[1]); const uint16_t coeffs2 = mod3_from_modQ(coeffs[2]); const uint16_t coeffs3 = mod3_from_modQ(coeffs[3]); const uint16_t coeffs4 = mod3_from_modQ(coeffs[4]); out[i] = coeffs0 + coeffs1 * 3 + coeffs2 * 9 + coeffs3 * 27 + coeffs4 * 81; coeffs += 5; } } // HRSS-specific functions // ----------------------- // poly_short_sample samples a vector of values in {0xffff (i.e. -1), 0, 1}. // This is the same action as the algorithm in [HRSSNIST] section 1.8.1, but // with HRSS-SXY the sampling algorithm is now a private detail of the // implementation (previously it had to match between two parties). This // function uses that freedom to implement a flatter distribution of values. static void poly_short_sample(struct poly *out, const uint8_t in[HRSS_SAMPLE_BYTES]) { OPENSSL_STATIC_ASSERT(HRSS_SAMPLE_BYTES == N - 1, "HRSS_SAMPLE_BYTES incorrect"); for (size_t i = 0; i < N - 1; i++) { uint16_t v = mod3(in[i]); // Map {0, 1, 2} -> {0, 1, 0xffff} v |= ((v >> 1) ^ 1) - 1; out->v[i] = v; } out->v[N - 1] = 0; } // poly_short_sample_plus performs the T+ sample as defined in [HRSSNIST], // section 1.8.2. static void poly_short_sample_plus(struct poly *out, const uint8_t in[HRSS_SAMPLE_BYTES]) { poly_short_sample(out, in); // sum (and the product in the for loop) will overflow. But that's fine // because |sum| is bound by +/- (N-2), and N < 2^15 so it works out. uint16_t sum = 0; for (unsigned i = 0; i < N - 2; i++) { sum += (unsigned) out->v[i] * out->v[i + 1]; } // If the sum is negative, flip the sign of even-positioned coefficients. (See // page 8 of [HRSS].) sum = ((int16_t) sum) >> 15; const uint16_t scale = sum | (~sum & 1); for (unsigned i = 0; i < N; i += 2) { out->v[i] = (unsigned) out->v[i] * scale; } } // poly_lift computes the function discussed in [HRSS], appendix B. static void poly_lift(struct poly *out, const struct poly *a) { // We wish to calculate a/(𝑥-1) mod Φ(N) over GF(3), where Φ(N) is the // Nth cyclotomic polynomial, i.e. 1 + 𝑥 + … + 𝑥^700 (since N is prime). // 1/(𝑥-1) has a fairly basic structure that we can exploit to speed this up: // // R. = PolynomialRing(GF(3)…) // inv = R.cyclotomic_polynomial(1).inverse_mod(R.cyclotomic_polynomial(n)) // list(inv)[:15] // [1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2] // // This three-element pattern of coefficients repeats for the whole // polynomial. // // Next define the overbar operator such that z̅ = z[0] + // reverse(z[1:]). (Index zero of a polynomial here is the coefficient // of the constant term. So index one is the coefficient of 𝑥 and so // on.) // // A less odd way to define this is to see that z̅ negates the indexes, // so z̅[0] = z[-0], z̅[1] = z[-1] and so on. // // The use of z̅ is that, when working mod (𝑥^701 - 1), vz[0] = , vz[1] = , …. (Where is the inner product: the sum // of the point-wise products.) Although we calculated the inverse mod // Φ(N), we can work mod (𝑥^N - 1) and reduce mod Φ(N) at the end. // (That's because (𝑥^N - 1) is a multiple of Φ(N).) // // When working mod (𝑥^N - 1), multiplication by 𝑥 is a right-rotation // of the list of coefficients. // // Thus we can consider what the pattern of z̅, 𝑥z̅, 𝑥^2z̅, … looks like: // // def reverse(xs): // suffix = list(xs[1:]) // suffix.reverse() // return [xs[0]] + suffix // // def rotate(xs): // return [xs[-1]] + xs[:-1] // // zoverbar = reverse(list(inv) + [0]) // xzoverbar = rotate(reverse(list(inv) + [0])) // x2zoverbar = rotate(rotate(reverse(list(inv) + [0]))) // // zoverbar[:15] // [1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1] // xzoverbar[:15] // [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0] // x2zoverbar[:15] // [2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2] // // (For a formula for z̅, see lemma two of appendix B.) // // After the first three elements have been taken care of, all then have // a repeating three-element cycle. The next value (𝑥^3z̅) involves // three rotations of the first pattern, thus the three-element cycle // lines up. However, the discontinuity in the first three elements // obviously moves to a different position. Consider the difference // between 𝑥^3z̅ and z̅: // // [x-y for (x,y) in zip(zoverbar, x3zoverbar)][:15] // [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] // // This pattern of differences is the same for all elements, although it // obviously moves right with the rotations. // // From this, we reach algorithm eight of appendix B. // Handle the first three elements of the inner products. out->v[0] = a->v[0] + a->v[2]; out->v[1] = a->v[1]; out->v[2] = -a->v[0] + a->v[2]; // s0, s1, s2 are added into out->v[0], out->v[1], and out->v[2], // respectively. We do not compute s1 because it's just -(s0 + s1). uint16_t s0 = 0, s2 = 0; for (size_t i = 3; i < 699; i += 3) { s0 += -a->v[i] + a->v[i + 2]; // s1 += a->v[i] - a->v[i + 1]; s2 += a->v[i + 1] - a->v[i + 2]; } // Handle the fact that the three-element pattern doesn't fill the // polynomial exactly (since 701 isn't a multiple of three). s0 -= a->v[699]; // s1 += a->v[699] - a->v[700]; s2 += a->v[700]; // Note that s0 + s1 + s2 = 0. out->v[0] += s0; out->v[1] -= (s0 + s2); // = s1 out->v[2] += s2; // Calculate the remaining inner products by taking advantage of the // fact that the pattern repeats every three cycles and the pattern of // differences moves with the rotation. for (size_t i = 3; i < N; i++) { out->v[i] = (out->v[i - 3] - (a->v[i - 2] + a->v[i - 1] + a->v[i])); } // Reduce mod Φ(N) by subtracting a multiple of out[700] from every // element and convert to mod Q. (See above about adding twice as // subtraction.) const crypto_word_t v = out->v[700]; for (unsigned i = 0; i < N; i++) { const uint16_t vi_mod3 = mod3(out->v[i] - v); // Map {0, 1, 2} to {0, 1, 0xffff}. out->v[i] = (~((vi_mod3 >> 1) - 1)) | vi_mod3; } poly_mul_x_minus_1(out); } struct public_key { struct poly ph; }; struct private_key { struct poly3 f, f_inverse; struct poly ph_inverse; uint8_t hmac_key[32]; }; // public_key_from_external converts an external public key pointer into an // internal one. Externally the alignment is only specified to be eight bytes // but we need 16-byte alignment. We could annotate the external struct with // that alignment but we can only assume that malloced pointers are 8-byte // aligned in any case. (Even if the underlying malloc returns values with // 16-byte alignment, |OPENSSL_malloc| will store an 8-byte size prefix and mess // that up.) static struct public_key *public_key_from_external( struct HRSS_public_key *ext) { OPENSSL_STATIC_ASSERT( sizeof(struct HRSS_public_key) >= sizeof(struct public_key) + 15, "HRSS public key too small"); uintptr_t p = (uintptr_t)ext; p = (p + 15) & ~15; return (struct public_key *)p; } // private_key_from_external does the same thing as |public_key_from_external|, // but for private keys. See the comment on that function about alignment // issues. static struct private_key *private_key_from_external( struct HRSS_private_key *ext) { OPENSSL_STATIC_ASSERT( sizeof(struct HRSS_private_key) >= sizeof(struct private_key) + 15, "HRSS private key too small"); uintptr_t p = (uintptr_t)ext; p = (p + 15) & ~15; return (struct private_key *)p; } void HRSS_generate_key( struct HRSS_public_key *out_pub, struct HRSS_private_key *out_priv, const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES + 32]) { struct public_key *pub = public_key_from_external(out_pub); struct private_key *priv = private_key_from_external(out_priv); OPENSSL_memcpy(priv->hmac_key, in + 2 * HRSS_SAMPLE_BYTES, sizeof(priv->hmac_key)); struct poly f; poly_short_sample_plus(&f, in); poly3_from_poly(&priv->f, &f); HRSS_poly3_invert(&priv->f_inverse, &priv->f); // pg_phi1 is p (i.e. 3) × g × Φ(1) (i.e. 𝑥-1). struct poly pg_phi1; poly_short_sample_plus(&pg_phi1, in + HRSS_SAMPLE_BYTES); for (unsigned i = 0; i < N; i++) { pg_phi1.v[i] *= 3; } poly_mul_x_minus_1(&pg_phi1); struct poly pfg_phi1; poly_mul(&pfg_phi1, &f, &pg_phi1); struct poly pfg_phi1_inverse; poly_invert(&pfg_phi1_inverse, &pfg_phi1); poly_mul(&pub->ph, &pfg_phi1_inverse, &pg_phi1); poly_mul(&pub->ph, &pub->ph, &pg_phi1); poly_clamp(&pub->ph); poly_mul(&priv->ph_inverse, &pfg_phi1_inverse, &f); poly_mul(&priv->ph_inverse, &priv->ph_inverse, &f); poly_clamp(&priv->ph_inverse); } static const char kSharedKey[] = "shared key"; void HRSS_encap(uint8_t out_ciphertext[POLY_BYTES], uint8_t out_shared_key[32], const struct HRSS_public_key *in_pub, const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES]) { const struct public_key *pub = public_key_from_external((struct HRSS_public_key *)in_pub); struct poly m, r, m_lifted; poly_short_sample(&m, in); poly_short_sample(&r, in + HRSS_SAMPLE_BYTES); poly_lift(&m_lifted, &m); struct poly prh_plus_m; poly_mul(&prh_plus_m, &r, &pub->ph); for (unsigned i = 0; i < N; i++) { prh_plus_m.v[i] += m_lifted.v[i]; } poly_marshal(out_ciphertext, &prh_plus_m); uint8_t m_bytes[HRSS_POLY3_BYTES], r_bytes[HRSS_POLY3_BYTES]; poly_marshal_mod3(m_bytes, &m); poly_marshal_mod3(r_bytes, &r); SHA256_CTX hash_ctx; SHA256_Init(&hash_ctx); SHA256_Update(&hash_ctx, kSharedKey, sizeof(kSharedKey)); SHA256_Update(&hash_ctx, m_bytes, sizeof(m_bytes)); SHA256_Update(&hash_ctx, r_bytes, sizeof(r_bytes)); SHA256_Update(&hash_ctx, out_ciphertext, POLY_BYTES); SHA256_Final(out_shared_key, &hash_ctx); } void HRSS_decap(uint8_t out_shared_key[HRSS_KEY_BYTES], const struct HRSS_private_key *in_priv, const uint8_t *ciphertext, size_t ciphertext_len) { const struct private_key *priv = private_key_from_external((struct HRSS_private_key *)in_priv); // This is HMAC, expanded inline rather than using the |HMAC| function so that // we can avoid dealing with possible allocation failures and so keep this // function infallible. uint8_t masked_key[SHA256_CBLOCK]; OPENSSL_STATIC_ASSERT(sizeof(priv->hmac_key) <= sizeof(masked_key), "HRSS HMAC key larger than SHA-256 block size"); for (size_t i = 0; i < sizeof(priv->hmac_key); i++) { masked_key[i] = priv->hmac_key[i] ^ 0x36; } OPENSSL_memset(masked_key + sizeof(priv->hmac_key), 0x36, sizeof(masked_key) - sizeof(priv->hmac_key)); SHA256_CTX hash_ctx; SHA256_Init(&hash_ctx); SHA256_Update(&hash_ctx, masked_key, sizeof(masked_key)); SHA256_Update(&hash_ctx, ciphertext, ciphertext_len); uint8_t inner_digest[SHA256_DIGEST_LENGTH]; SHA256_Final(inner_digest, &hash_ctx); for (size_t i = 0; i < sizeof(priv->hmac_key); i++) { masked_key[i] ^= (0x5c ^ 0x36); } OPENSSL_memset(masked_key + sizeof(priv->hmac_key), 0x5c, sizeof(masked_key) - sizeof(priv->hmac_key)); SHA256_Init(&hash_ctx); SHA256_Update(&hash_ctx, masked_key, sizeof(masked_key)); SHA256_Update(&hash_ctx, inner_digest, sizeof(inner_digest)); OPENSSL_STATIC_ASSERT(HRSS_KEY_BYTES == SHA256_DIGEST_LENGTH, "HRSS shared key length incorrect"); SHA256_Final(out_shared_key, &hash_ctx); struct poly c; // If the ciphertext is publicly invalid then a random shared key is still // returned to simply the logic of the caller, but this path is not constant // time. if (ciphertext_len != HRSS_CIPHERTEXT_BYTES || !poly_unmarshal(&c, ciphertext)) { return; } struct poly f, cf; struct poly3 cf3, m3; poly_from_poly3(&f, &priv->f); poly_mul(&cf, &c, &f); poly3_from_poly(&cf3, &cf); // Note that cf3 is not reduced mod Φ(N). That reduction is deferred. HRSS_poly3_mul(&m3, &cf3, &priv->f_inverse); struct poly m, m_lifted; poly_from_poly3(&m, &m3); poly_lift(&m_lifted, &m); struct poly r; for (unsigned i = 0; i < N; i++) { r.v[i] = c.v[i] - m_lifted.v[i]; } poly_mul(&r, &r, &priv->ph_inverse); poly_mod_phiN(&r); poly_clamp(&r); struct poly3 r3; crypto_word_t ok = poly3_from_poly_checked(&r3, &r); // [NTRUCOMP] section 5.1 includes ReEnc2 and a proof that it's valid. Rather // than do an expensive |poly_mul|, it rebuilds |c'| from |c - lift(m)| // (called |b|) with: // t = (−b(1)/N) mod Q // c' = b + tΦ(N) + lift(m) mod Q // // When polynomials are transmitted, the final coefficient is omitted and // |poly_unmarshal| sets it such that f(1) == 0. Thus c(1) == 0. Also, // |poly_lift| multiplies the result by (x-1) and therefore evaluating a // lifted polynomial at 1 is also zero. Thus lift(m)(1) == 0 and so // (c - lift(m))(1) == 0. // // Although we defer the reduction above, |b| is conceptually reduced mod // Φ(N). In order to do that reduction one subtracts |c[N-1]| from every // coefficient. Therefore b(1) = -c[N-1]×N. The value of |t|, above, then is // just recovering |c[N-1]|, and adding tΦ(N) is simply undoing the reduction. // Therefore b + tΦ(N) + lift(m) = c by construction and we don't need to // recover |c| at all so long as we do the checks in // |poly3_from_poly_checked|. // // The |poly_marshal| here then is just confirming that |poly_unmarshal| is // strict and could be omitted. uint8_t expected_ciphertext[HRSS_CIPHERTEXT_BYTES]; OPENSSL_STATIC_ASSERT(HRSS_CIPHERTEXT_BYTES == POLY_BYTES, "ciphertext is the wrong size"); assert(ciphertext_len == sizeof(expected_ciphertext)); poly_marshal(expected_ciphertext, &c); uint8_t m_bytes[HRSS_POLY3_BYTES]; uint8_t r_bytes[HRSS_POLY3_BYTES]; poly_marshal_mod3(m_bytes, &m); poly_marshal_mod3(r_bytes, &r); ok &= constant_time_is_zero_w(CRYPTO_memcmp(ciphertext, expected_ciphertext, sizeof(expected_ciphertext))); uint8_t shared_key[32]; SHA256_Init(&hash_ctx); SHA256_Update(&hash_ctx, kSharedKey, sizeof(kSharedKey)); SHA256_Update(&hash_ctx, m_bytes, sizeof(m_bytes)); SHA256_Update(&hash_ctx, r_bytes, sizeof(r_bytes)); SHA256_Update(&hash_ctx, expected_ciphertext, sizeof(expected_ciphertext)); SHA256_Final(shared_key, &hash_ctx); for (unsigned i = 0; i < sizeof(shared_key); i++) { out_shared_key[i] = constant_time_select_8(ok, shared_key[i], out_shared_key[i]); } } void HRSS_marshal_public_key(uint8_t out[HRSS_PUBLIC_KEY_BYTES], const struct HRSS_public_key *in_pub) { const struct public_key *pub = public_key_from_external((struct HRSS_public_key *)in_pub); poly_marshal(out, &pub->ph); } int HRSS_parse_public_key(struct HRSS_public_key *out, const uint8_t in[HRSS_PUBLIC_KEY_BYTES]) { struct public_key *pub = public_key_from_external(out); if (!poly_unmarshal(&pub->ph, in)) { return 0; } OPENSSL_memset(&pub->ph.v[N], 0, 3 * sizeof(uint16_t)); return 1; }